This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285487 #18 Jun 14 2017 02:47:06 %S A285487 1,2310,2,1155,4,1365,6,385,12,455,18,595,22,105,26,165,14,195,28,255, %T A285487 38,210,11,390,7,330,13,420,17,462,5,546,10,231,20,273,30,77,60,91,66, %U A285487 35,78,55,42,65,84,85,114,70,33,130,21,110,39,140,51,154,15,182 %N A285487 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 5 distinct prime factors. %C A285487 This sequence can always be extended with a multiple of 2310 = 2*3*5*7*11; after a term that has at least 5 distinct prime factors, we can extend the sequence with the least unused number; as there are infinitely many numbers with at least 5 distinct prime factors, this sequence is a permutation of the natural numbers (with inverse A285488). %C A285487 Conjecturally, a(n) ~ n. %C A285487 The first fixed points are: 1, 75, 295, 375, 1205, 1207, 1211, 6017, 19870, 19872, 19874, 19878, 19907, 19909. %H A285487 Rémy Sigrist, <a href="/A285487/b285487.txt">Table of n, a(n) for n = 1..30000</a> %H A285487 Rémy Sigrist, <a href="/A285487/a285487.txt">C++ program for A285487</a> %H A285487 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A285487 The first terms, alongside the primes p dividing a(n)*a(n+1), are: %e A285487 n a(n) p %e A285487 -- ---- -------------- %e A285487 1 1 2, 3, 5, 7, 11 %e A285487 2 2310 2, 3, 5, 7, 11 %e A285487 3 2 2, 3, 5, 7, 11 %e A285487 4 1155 2, 3, 5, 7, 11 %e A285487 5 4 2, 3, 5, 7, 13 %e A285487 6 1365 2, 3, 5, 7, 13 %e A285487 7 6 2, 3, 5, 7, 11 %e A285487 8 385 2, 3, 5, 7, 11 %e A285487 9 12 2, 3, 5, 7, 13 %e A285487 10 455 2, 3, 5, 7, 13 %e A285487 11 18 2, 3, 5, 7, 17 %e A285487 12 595 2, 5, 7, 11, 17 %e A285487 13 22 2, 3, 5, 7, 11 %e A285487 14 105 2, 3, 5, 7, 13 %e A285487 15 26 2, 3, 5, 11, 13 %e A285487 16 165 2, 3, 5, 7, 11 %e A285487 17 14 2, 3, 5, 7, 13 %e A285487 18 195 2, 3, 5, 7, 13 %e A285487 19 28 2, 3, 5, 7, 17 %e A285487 20 255 2, 3, 5, 17, 19 %Y A285487 Cf. A285488. %K A285487 nonn,look %O A285487 1,2 %A A285487 _Rémy Sigrist_, Apr 19 2017