This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285491 #19 Nov 04 2023 21:52:46 %S A285491 1,1,2,1,4,6,2,9,1,13,8,19,2,15,12,28,32,6,4,18,43,1,51,16,36,41,28, %T A285491 34,2,57,66,10,80,5,31,24,61,71,89,12,107,128,18,99,42,1,123,142,10, %U A285491 38,78,164,120,21,1,58,183,169,99,93,203,22,200,155,7,130,228 %N A285491 Lexicographically earliest sequence of positive integers such that no two distinct unordered pairs of points ((n, a(n)), (m, a(m))) and ((k, a(k)), (j, a(j))) have the same midpoint. %C A285491 No three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression. %H A285491 Giovanni Resta, <a href="/A285491/b285491.txt">Table of n, a(n) for n = 1..4000</a> (first 650 terms from Peter Kagey) %e A285491 For n = 3: %e A285491 a(3) != 1 or else midpoint((1, 1), (3, 1)) = midpoint((2, 1), (2, 1)), so %e A285491 a(3) = 2. %e A285491 For n = 5: %e A285491 a(5) != 1 or else midpoint((1, 1), (5, 1)) = midpoint((2, 1), (4, 1)); %e A285491 a(5) != 2 or else midpoint((2, 1), (5, 2)) = midpoint((3, 2), (4, 1)); %e A285491 a(5) != 3 or else midpoint((1, 1), (5, 3)) = midpoint((3, 2), (3, 2)); so %e A285491 a(5) = 4. %Y A285491 Cf. A229037, A248625, A285490. %K A285491 nonn,look %O A285491 1,3 %A A285491 _Peter Kagey_, Apr 19 2017