This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285529 #14 Apr 21 2017 08:30:02 %S A285529 1,2,2,6,12,6,32,96,96,32,320,1280,1920,1280,320,6144,30720,61440, %T A285529 61440,30720,6144,229376,1376256,3440640,4587520,3440640,1376256, %U A285529 229376,16777216,117440512,352321536,587202560,587202560,352321536,117440512,16777216 %N A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1. %F A285529 E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!. %F A285529 Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n). %F A285529 T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - _Alois P. Heinz_, Apr 21 2017 %e A285529 1, %e A285529 2, 2, %e A285529 6, 12, 6, %e A285529 32, 96, 96, 32, %e A285529 320, 1280, 1920, 1280, 320, %e A285529 ... %t A285529 nn = 9; Map[Select[#, # > 0 &] &, %t A285529 Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid %Y A285529 Row sums give A095340. %Y A285529 Columns for k=0-3: A123903, A095338, A038094, A038096. %K A285529 nonn,tabl %O A285529 1,2 %A A285529 _Geoffrey Critzer_, Apr 20 2017