cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285548 Array read by antidiagonals: T(m,n) = number of step cyclic shifted sequences of length n using a maximum of m different symbols.

This page as a plain text file.
%I A285548 #19 Oct 02 2017 15:20:03
%S A285548 1,1,2,1,3,3,1,4,6,4,1,6,10,10,5,1,6,21,20,15,6,1,13,24,55,35,21,7,1,
%T A285548 10,92,76,120,56,28,8,1,24,78,430,201,231,84,36,9,1,22,327,460,1505,
%U A285548 462,406,120,45,10,1,45,443,2605,2015,4291,952,666,165,55,11
%N A285548 Array read by antidiagonals: T(m,n) = number of step cyclic shifted sequences of length n using a maximum of m different symbols.
%C A285548 See A056371, A002729 for an explanation of step shifts. Under step cyclic shifts, abcde, bdace, bcdea, cdeab and daceb etc. are equivalent.
%C A285548 Equivalently, the number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence.  Mappings A and B are equivalent if there is a d, prime to n, and a t such that A(i) = B((i*d + t) mod n) for i in {0..n-1}.
%C A285548 All column sequences are polynomials of order n.
%D A285548 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H A285548 Andrew Howroyd, <a href="/A285548/b285548.txt">Table of n, a(n) for n = 1..1275</a>
%H A285548 R. C. Titsworth, <a href="http://projecteuclid.org/euclid.ijm/1256059671">Equivalence classes of periodic sequences</a>, Illinois J. Math., 8 (1964), 266-270.
%e A285548 Table starts:
%e A285548 1  1  1   1   1     1     1      1      1       1 ...
%e A285548 2  3  4   6   6    13    10     24     22      45 ...
%e A285548 3  6 10  21  24    92    78    327    443    1632 ...
%e A285548 4 10 20  55  76   430   460   2605   5164   26962 ...
%e A285548 5 15 35 120 201  1505  2015  14070  37085  246753 ...
%e A285548 6 21 56 231 462  4291  6966  57561 188866 1519035 ...
%e A285548 7 28 84 406 952 10528 20140 192094 752087 7079800 ...
%e A285548 ...
%t A285548 IsLeastPoint[s_, f_] := Module[{t=f[s]}, While[t>s, t=f[t]]; Boole[s==t]];
%t A285548 c[n_, k_, t_] := Sum[IsLeastPoint[u, Mod[#*k+t, n]&], {u, 0, n-1}];
%t A285548 a[n_, x_] := Sum[If[GCD[k, n] == 1, x^c[n, k, t], 0], {t, 0, n-1}, {k, 1,
%t A285548 n}] / (n*EulerPhi[n]);
%t A285548 Table[a[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 05 2017, translated from PARI *)
%o A285548 (PARI)
%o A285548 IsLeastPoint(s,f)={my(t=f(s)); while(t>s,t=f(t));s==t}
%o A285548 C(n,k,t)=sum(u=0,n-1,IsLeastPoint(u,v->(v*k+t)%n));
%o A285548 a(n,x)=sum(t=0, n-1, sum(k=1, n, if (gcd(k, n)==1, x^C(n,k,t),0)))/(n * eulerphi(n));
%o A285548 for(m=1, 7, for(n=1, 10, print1( a(n,m), ", ") ); print(); );
%Y A285548 Rows 2-6 are A002729, A056411, A056412, A056413, A056414.
%Y A285548 Cf. A285522, A132191.
%K A285548 nonn,tabl
%O A285548 1,3
%A A285548 _Andrew Howroyd_, Apr 20 2017