A285552 Smallest number k that cannot be expressed as x^2 + y^2 + z^2 + w^2 where x >= y >= z >= w >= 0 and x > floor(sqrt(k)) - n, but can be so expressed if x = floor(sqrt(k)) - n.
23, 224, 128, 3712, 896, 512, 1536, 54272, 14848, 11264, 3584, 11776, 2048, 6144, 20480, 833536, 217088, 94208, 59392, 45056, 116736, 22528, 14336, 118784, 47104, 8192, 63488, 24576, 49152, 81920, 294912, 13082624, 3334144, 1564672, 868352, 548864, 376832
Offset: 1
Keywords
Examples
At k = 128, floor(sqrt(k)) = 11, and there is no sum x^2 + y^2 + z^2 + w^2 = k in which x = 11, 10, or 9, but there is such a sum in which x = 8 (namely, 8^2 + 8^2 + 0^2 + 0^2 = 128); no smaller positive integer k has this property, so a(3) = 128. At k = 13082624, floor(sqrt(k)) = 3616, and there is no sum x^2 + y^2 + z^2 + w^2 = k such that x > 3584 = 3616 - 32, but there is such a sum in which x = 3584 (namely, 3584^2 + 448^2 + 192^2 + 0^2 = 13082624); no smaller positive integer k has this property, so a(32) = 13082624.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A178786.
Comments