cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285573 Number of finite nonempty sets of pairwise indivisible divisors of n.

This page as a plain text file.
%I A285573 #8 Apr 21 2017 20:43:25
%S A285573 1,2,2,3,2,5,2,4,3,5,2,9,2,5,5,5,2,9,2,9,5,5,2,14,3,5,4,9,2,19,2,6,5,
%T A285573 5,5,19,2,5,5,14,2,19,2,9,9,5,2,20,3,9,5,9,2,14,5,14,5,5,2,49,2,5,9,7,
%U A285573 5,19,2,9,5,19,2,34,2,5,9,9,5,19,2,20,5,5,2,49,5,5,5,14,2,49,5,9,5,5,5,27,2,9,9,19
%N A285573 Number of finite nonempty sets of pairwise indivisible divisors of n.
%C A285573 From _Robert Israel_, Apr 21 2017: (Start)
%C A285573 If n = p^k for prime p, a(n) = k+1.
%C A285573 If n = p^j*q^k for distinct primes p,q, a(n) = binomial(j+k+2,j+1)-1. (End)
%e A285573 The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}.
%p A285573 g:= proc(S) local x, Sx; option remember;
%p A285573    if nops(S) = 0 then return {{}} fi;
%p A285573    x:= S[1];
%p A285573    Sx:= subsop(1=NULL,S);
%p A285573    procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx)))
%p A285573 end proc:
%p A285573 f:= proc(n) local F,D;
%p A285573   F:= ifactors(n)[2];
%p A285573   D:= numtheory:-divisors(mul(ithprime(i)^F[i,2],i=1..nops(F)));
%p A285573   nops(g(D)) - 1;
%p A285573 end proc:
%p A285573 map(f, [$1..100]); # _Robert Israel_, Apr 21 2017
%t A285573 nn=50;
%t A285573 stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
%t A285573 Table[Length[Rest[stableSets[Divisors[n],Divisible]]],{n,1,nn}]
%Y A285573 Cf. A006126, A048143, A076078, A076413, A198085, A285572.
%K A285573 nonn
%O A285573 1,2
%A A285573 _Gus Wiseman_, Apr 21 2017