This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285573 #8 Apr 21 2017 20:43:25 %S A285573 1,2,2,3,2,5,2,4,3,5,2,9,2,5,5,5,2,9,2,9,5,5,2,14,3,5,4,9,2,19,2,6,5, %T A285573 5,5,19,2,5,5,14,2,19,2,9,9,5,2,20,3,9,5,9,2,14,5,14,5,5,2,49,2,5,9,7, %U A285573 5,19,2,9,5,19,2,34,2,5,9,9,5,19,2,20,5,5,2,49,5,5,5,14,2,49,5,9,5,5,5,27,2,9,9,19 %N A285573 Number of finite nonempty sets of pairwise indivisible divisors of n. %C A285573 From _Robert Israel_, Apr 21 2017: (Start) %C A285573 If n = p^k for prime p, a(n) = k+1. %C A285573 If n = p^j*q^k for distinct primes p,q, a(n) = binomial(j+k+2,j+1)-1. (End) %e A285573 The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}. %p A285573 g:= proc(S) local x, Sx; option remember; %p A285573 if nops(S) = 0 then return {{}} fi; %p A285573 x:= S[1]; %p A285573 Sx:= subsop(1=NULL,S); %p A285573 procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx))) %p A285573 end proc: %p A285573 f:= proc(n) local F,D; %p A285573 F:= ifactors(n)[2]; %p A285573 D:= numtheory:-divisors(mul(ithprime(i)^F[i,2],i=1..nops(F))); %p A285573 nops(g(D)) - 1; %p A285573 end proc: %p A285573 map(f, [$1..100]); # _Robert Israel_, Apr 21 2017 %t A285573 nn=50; %t A285573 stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; %t A285573 Table[Length[Rest[stableSets[Divisors[n],Divisible]]],{n,1,nn}] %Y A285573 Cf. A006126, A048143, A076078, A076413, A198085, A285572. %K A285573 nonn %O A285573 1,2 %A A285573 _Gus Wiseman_, Apr 21 2017