This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285574 #33 Oct 07 2017 22:21:18 %S A285574 1,1,1,3,1,0,1,5,1,3,0,1,0,7,1,0,0,1,3,9,1,0,5,0,1,0,0,11,1,3,0,0,1,0, %T A285574 0,13,1,0,7,0,1,3,5,0,15,1,0,0,0,0,1,0,0,0,17,1,3,0,9,0,1,0,0,0,19,1, %U A285574 0,5,0,0,1,3,0,7,0,21,1,0,0,0,11,0,1,0,0,0,0,23,1,3,0,0,0,0,1,0,5,0,0,25 %N A285574 Irregular triangle read by rows which arises from a diagram which is similar to the diagram of A261699, but here the even-indexed zig-zag lines are located on the right-hand side of the vertical axis of the diagram. %C A285574 In the diagram we have that: %C A285574 The number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of partitions of n into consecutive parts. %C A285574 The number of horizontal line segments in the left-hand part of the n-th row equals A082647, the number of partitions of n into an odd number of consecutive parts. %C A285574 The number of horizontal line segments in the right-hand part of the n-th row equals A131576, the number of partitions of n into an even number of consecutive parts. %C A285574 The diagram explains the unusual ordering of the terms in the triangle A261699, in which the even-indexed zig-zag lines are located on the left-hand side of the vertical axis of the diagram. %e A285574 Triangle begins: %e A285574 1; %e A285574 1; %e A285574 1, 3; %e A285574 1, 0, %e A285574 1, 5; %e A285574 1, 3, 0; %e A285574 1, 0, 7; %e A285574 1, 0, 0; %e A285574 1, 3, 9; %e A285574 1, 0, 5, 0; %e A285574 1, 0, 0, 11; %e A285574 1, 3, 0, 0; %e A285574 1, 0, 0, 13; %e A285574 1, 0, 7, 0; %e A285574 1, 3, 5, 0, 15; %e A285574 1, 0, 0, 0, 0; %e A285574 1, 0, 0, 0, 17; %e A285574 1, 3, 0, 9, 0; %e A285574 1, 0, 0, 0, 19; %e A285574 1, 0, 5, 0, 0; %e A285574 1, 3, 0, 7, 0, 21; %e A285574 ... %e A285574 Illustration of initial terms of the diagram: %e A285574 Row _ %e A285574 1 _|1| %e A285574 2 _|1 |_ %e A285574 3 _|1 |3| %e A285574 4 _|1 |0|_ %e A285574 5 _|1 _| 5| %e A285574 6 _|1 |3| 0|_ %e A285574 7 _|1 |0| 7| %e A285574 8 _|1 _|0| 0|_ %e A285574 9 _|1 |3 |_ 9| %e A285574 10 _|1 |0 |5| 0|_ %e A285574 11 _|1 _|0 |0| 11| %e A285574 12 _|1 |3 |0| 0|_ %e A285574 13 _|1 |0 |0|_ 13| %e A285574 14 _|1 _|0 _| 7| 0|_ %e A285574 15 _|1 |3 |5| 0| 15| %e A285574 16 _|1 |0 |0| 0| 0|_ %e A285574 17 _|1 _|0 |0| 0|_ 17| %e A285574 18 _|1 |3 |0| 9| 0|_ %e A285574 19 _|1 |0 _|0| 0| 19| %e A285574 20 _|1 _|0 |5 |_ 0| 0|_ %e A285574 21 |1 |3 |0 |7| 0| 21| %e A285574 ... %e A285574 (Compare with the diagram of A261699.) %Y A285574 Positive terms give A182469. %Y A285574 Row n has length A003056(n). %Y A285574 The sum of row n is A000593(n). %Y A285574 Column k starts in row A000217(k). %Y A285574 The number of positive terms in row n is A001227(n). %Y A285574 Cf. A082647, A131576, A196020, A235791, A236104, A237048, A237591, A237593, A245092, A259176, A259177, A261699, A279820. %K A285574 nonn,tabf %O A285574 1,4 %A A285574 _Omar E. Pol_, Apr 21 2017