This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285585 #17 Apr 23 2017 06:26:26 %S A285585 1,5,10,5,-15,-25,10,60,25,-110,-150,85,360,155,-505,-675,330,1410, %T A285585 555,-1925,-2450,1210,4920,1930,-6275,-7875,3710,15000,5720,-18575, %U A285585 -22800,10735,42310,15960,-50605,-61400,28280,110610,41100,-129570,-155250,71060,274320 %N A285585 Expansion of r(q^5) / r(q)^5 in powers of q where r() is the Rogers-Ramanujan continued fraction. %C A285585 G.f. A(q) satisfies: A(q) = v / u^5 = (v^4 + 2*v^3 + 4*v^2 + 3*v + 1) / (v^4 - 3*v^3 + 4*v^2 - 2*v + 1), where u = r(q) and v = r(q^5). %H A285585 Seiichi Manyama, <a href="/A285585/b285585.txt">Table of n, a(n) for n = 0..10000</a> %H A285585 Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, <a href="http://doi.org/10.1016/S0377-0427(99)00033-3">The Rogers-Ramanujan continued fraction</a>, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24. %Y A285585 r(q^k) / r(q)^k: A285348 (k=2), A285583 (k=3), A285584 (k=4), this sequence (k=5). %Y A285585 Cf. A078905 (u^5), A229793 (1 / u^5), A285587, A285630. %K A285585 sign %O A285585 0,2 %A A285585 _Seiichi Manyama_, Apr 22 2017