This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285595 #36 Feb 02 2025 11:06:01 %S A285595 1,4,2,17,10,3,76,52,18,4,362,274,111,28,5,1842,1500,675,200,40,6, %T A285595 9991,8614,4185,1380,325,54,7,57568,51992,26832,9568,2510,492,70,8, %U A285595 351125,329650,178755,67820,19255,4206,707,88,9,2259302,2192434,1239351,494828,149605,35382,6629,976,108,10 %N A285595 Sum T(n,k) of the k-th entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %C A285595 T(n,k) is also k times the number of blocks of size >k in all set partitions of [n+1]. T(3,2) = 10 = 2 * 5 because there are 5 blocks of size >2 in all set partitions of [4], namely in 1234, 123|4, 124|3, 134|2, 1|234. %H A285595 Alois P. Heinz, <a href="/A285595/b285595.txt">Rows n = 1..141, flattened</a> %H A285595 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285595 T(n,k) = k * Sum_{j=k+1..n+1} binomial(n+1,j)*A000110(n+1-j). %F A285595 T(n,k) = k * Sum_{j=k+1..n+1} A175757(n+1,j). %F A285595 Sum_{k=1..n} T(n,k)/k = A278677(n-1). %e A285595 T(3,2) = 10 because the sum of the second entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+2+3+3+0 = 10. %e A285595 Triangle T(n,k) begins: %e A285595 1; %e A285595 4, 2; %e A285595 17, 10, 3; %e A285595 76, 52, 18, 4; %e A285595 362, 274, 111, 28, 5; %e A285595 1842, 1500, 675, 200, 40, 6; %e A285595 9991, 8614, 4185, 1380, 325, 54, 7; %e A285595 57568, 51992, 26832, 9568, 2510, 492, 70, 8; %e A285595 ... %p A285595 T:= proc(h) option remember; local b; b:= %p A285595 proc(n, l) option remember; `if`(n=0, [1, 0], %p A285595 (p-> p+[0, (h-n+1)*p[1]*x^1])(b(n-1, [l[], 1]))+ %p A285595 add((p-> p+[0, (h-n+1)*p[1]*x^(l[j]+1)])(b(n-1, %p A285595 sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l))) %p A285595 end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2]) %p A285595 end: %p A285595 seq(T(n), n=1..12); %p A285595 # second Maple program: %p A285595 b:= proc(n) option remember; `if`(n=0, [1, 0], %p A285595 add((p-> p+[0, p[1]*add(x^k, k=1..j-1)])( %p A285595 b(n-j)*binomial(n-1, j-1)), j=1..n)) %p A285595 end: %p A285595 T:= n-> (p-> seq(coeff(p, x, i)*i, i=1..n))(b(n+1)[2]): %p A285595 seq(T(n), n=1..12); %t A285595 b[n_] := b[n] = If[n == 0, {1, 0}, Sum[# + {0, #[[1]]*Sum[x^k, {k, 1, j-1} ]}&[b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]]; %t A285595 T[n_] := Table[Coefficient[#, x, i]*i, {i, 1, n}] &[b[n + 1][[2]]]; %t A285595 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 23 2018, translated from 2nd Maple program *) %Y A285595 Column k=1 gives A124325(n+1). %Y A285595 Row sums give A000110(n) * A000217(n) = A105488(n+3). %Y A285595 Main diagonal and first lower diagonal give: A000027, A028552. %Y A285595 Cf. A007318, A175757, A278677, A283424, A285362, A285793, A286897. %K A285595 nonn,tabl %O A285595 1,2 %A A285595 _Alois P. Heinz_, Apr 22 2017