cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285612 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A285612 #16 Feb 16 2025 08:33:44
%S A285612 1,1,10,10,110,110,1110,1110,11110,11110,111110,111110,1111110,
%T A285612 1111110,11111110,11111110,111111110,111111110,1111111110,1111111110,
%U A285612 11111111110,11111111110,111111111110,111111111110,1111111111110,1111111111110,11111111111110
%N A285612 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.
%C A285612 Initialized with a single black (ON) cell at stage zero.
%D A285612 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A285612 Robert Price, <a href="/A285612/b285612.txt">Table of n, a(n) for n = 0..126</a>
%H A285612 Robert Price, <a href="/A285612/a285612.tmp.txt">Diagrams of first 20 stages</a>
%H A285612 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A285612 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A285612 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A285612 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A285612 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A285612 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A285612 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A285612 Conjectures from _Colin Barker_, Apr 23 2017: (Start)
%F A285612 G.f.: (1 - x^2 + 10*x^4) / ((1 - x)*(1 - 10*x^2)).
%F A285612 a(n) = 10*(10^(n/2) - 1)/9 for n>1 and even.
%F A285612 a(n) = (10^((n+1)/2) - 10)/9 for n>1 and odd.
%F A285612 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>2.
%F A285612 (End)
%t A285612 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A285612 code = 62; stages = 128;
%t A285612 rule = IntegerDigits[code, 2, 10];
%t A285612 g = 2 * stages + 1; (* Maximum size of grid *)
%t A285612 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A285612 ca = a;
%t A285612 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A285612 PrependTo[ca, a];
%t A285612 (* Trim full grid to reflect growth by one cell at each stage *)
%t A285612 k = (Length[ca[[1]]] + 1)/2;
%t A285612 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A285612 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A285612 Cf. A285613, A056453, A233411.
%K A285612 nonn,easy
%O A285612 0,3
%A A285612 _Robert Price_, Apr 22 2017