cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285613 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A285613 #12 Feb 16 2025 08:33:44
%S A285613 1,10,10,100,1100,11000,111000,1110000,11110000,111100000,1111100000,
%T A285613 11111000000,111111000000,1111110000000,11111110000000,
%U A285613 111111100000000,1111111100000000,11111111000000000,111111111000000000,1111111110000000000,11111111110000000000
%N A285613 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.
%C A285613 Initialized with a single black (ON) cell at stage zero.
%D A285613 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A285613 Robert Price, <a href="/A285613/b285613.txt">Table of n, a(n) for n = 0..126</a>
%H A285613 Robert Price, <a href="/A285613/a285613.tmp.txt">Diagrams of first 20 stages</a>
%H A285613 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A285613 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A285613 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A285613 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A285613 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A285613 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A285613 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A285613 Conjectures from _Colin Barker_, Apr 23 2017: (Start)
%F A285613 G.f.: (1 - 100*x^2 + 1000*x^4) / ((1 - 10*x)*(1 - 10*x^2)).
%F A285613 a(n) = (10^n - 10^(n/2)) / 9 for n>1 and even.
%F A285613 a(n) = (10^n - 10^(n/2+1/2)) / 9 for n>1 and odd.
%F A285613 a(n) = 10*a(n-1) + 10*a(n-2) - 100*a(n-3) for n>2.
%F A285613 (End)
%t A285613 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A285613 code = 62; stages = 128;
%t A285613 rule = IntegerDigits[code, 2, 10];
%t A285613 g = 2 * stages + 1; (* Maximum size of grid *)
%t A285613 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A285613 ca = a;
%t A285613 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A285613 PrependTo[ca, a];
%t A285613 (* Trim full grid to reflect growth by one cell at each stage *)
%t A285613 k = (Length[ca[[1]]] + 1)/2;
%t A285613 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A285613 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A285613 Cf. A285612, A056453, A233411.
%K A285613 nonn,easy
%O A285613 0,2
%A A285613 _Robert Price_, Apr 22 2017