cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285630 Expansion of r(q)^5 / r(q^5) in powers of q where r() is the Rogers-Ramanujan continued fraction.

This page as a plain text file.
%I A285630 #12 Apr 23 2017 10:09:50
%S A285630 1,-5,15,-30,40,-25,-35,140,-250,285,-150,-210,740,-1230,1330,-675,
%T A285630 -880,3015,-4830,5025,-2450,-3135,10380,-16180,16450,-7875,-9785,
%U A285630 31850,-48720,48600,-22800,-27985,89465,-134760,132530,-61400,-74205,234515,-349000,339145
%N A285630 Expansion of r(q)^5 / r(q^5) in powers of q where r() is the Rogers-Ramanujan continued fraction.
%C A285630 G.f. A(q) satisfies: A(q) = u^5 / v = (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) / (v^4 + 2*v^3 + 4*v^2 + 3*v + 1), where u = r(q) and v = r(q^5).
%H A285630 Seiichi Manyama, <a href="/A285630/b285630.txt">Table of n, a(n) for n = 0..10000</a>
%H A285630 Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, <a href="http://doi.org/10.1016/S0377-0427(99)00033-3">The Rogers-Ramanujan continued fraction</a>, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.
%Y A285630 r(q)^k / r(q^k): A285349 (k=2), A285628 (k=3), A285629 (k=4), this sequence (k=5).
%Y A285630 Cf. A078905 (u^5), A229793 (1 / u^5), A285585, A285587.
%K A285630 sign
%O A285630 0,2
%A A285630 _Seiichi Manyama_, Apr 22 2017