This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285637 #18 Mar 11 2025 02:54:33 %S A285637 1,0,1,2,1,4,6,10,19,30,55,92,161,282,483,846,1462,2538,4409,7642, %T A285637 13276,23032,39977,69394,120426,209036,362800,629698,1092952,1896968, %U A285637 3292522,5714678,9918752,17215620,29880461,51862438,90015657,156236814,271174435,470667300,816919764,1417897172,2460991365 %N A285637 G.f.: 1/( (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) * (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))) ), a continued fraction. %H A285637 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a> %F A285637 G.f.: A(x) = R(x)*P(x)/Q(x), where R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3))), P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m) and Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m). %F A285637 a(n) ~ c * d^n, where d = 1/A347901 = 1.7356628245303474256582607497196685302546528472903927546099... and c = 0.215558365582078354136603033062960103377669... - _Vaclav Kotesovec_, Aug 26 2017 %e A285637 G.f.: A(x) = 1 + x^2 + 2*x^3 + x^4 + 4*x^5 + 6*x^6 + 10*x^7 + 19*x^8 + 30*x^9 + 55*x^10 + ... %t A285637 nmax = 42; CoefficientList[Series[(1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x] %t A285637 nmax = 42; CoefficientList[Series[Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}] Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] %Y A285637 Cf. A003823, A005169, A007325, A055101, A285635, A285636, A285638. %K A285637 nonn %O A285637 0,4 %A A285637 _Ilya Gutkovskiy_, Apr 23 2017