A285683 Positions of 2 in A285680.
5, 10, 12, 17, 22, 24, 29, 31, 36, 41, 43, 48, 53, 55, 60, 62, 67, 72, 74, 79, 81, 86, 91, 93, 98, 103, 105, 110, 112, 117, 122, 124, 129, 134, 136, 141, 143, 148, 153, 155, 160, 162, 167, 172, 174, 179, 184, 186, 191, 193, 198, 203, 205, 210, 212, 217, 222
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424v3 [math.NT], 2018-2019.
- Jacques Justin and Laurent Vuillon, Return words in Sturmian and episturmian words, RAIRO-Theoretical Informatics and Applications 34.5 (2000): 343-356.
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13] ; (* A003849 *) w = StringJoin[Map[ToString, s]] w1 = StringReplace[w, {"1010" -> "2"}] st = ToCharacterCode[w1] - 48; (* A285680 *) Flatten[Position[st, 0]]; (* A285681 *) Flatten[Position[st, 1]]; (* A285682 *) Flatten[Position[st, 2]]; (* A285683 *)
Formula
a(n) = 3*floor(n*phi) - n + 3 (this follows from Theorem 29 in Allouche and Dekking, since the overlap word 101010 that contains 1010 does not occur in the Fibonacci word). - Michel Dekking, Oct 09 2018
Comments