This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285708 #13 May 09 2021 11:18:42 %S A285708 1,2,3,2,5,3,7,2,3,5,11,4,13,7,5,2,17,9,19,5,7,11,23,4,5,13,3,7,29,10, %T A285708 31,2,11,17,7,9,37,19,13,5,41,7,43,11,5,23,47,4,7,5,17,13,53,9,11,8, %U A285708 19,29,59,10,61,31,9,2,13,33,67,17,23,35,71,9,73,37,5,19,11,13,79,5,3,41,83,28,17,43,29,11,89,10,13,23,31,47,19,32,97,49,11,5 %N A285708 a(n) = n / A285707(n). %H A285708 Antti Karttunen, <a href="/A285708/b285708.txt">Table of n, a(n) for n = 1..10000</a> %F A285708 a(n) = n / A285707(n). %F A285708 For n > 1, a(n) = n / gcd(n, A079277(n)). %o A285708 (Scheme) (define (A285708 n) (/ n (A285707 n))) %o A285708 (Python) %o A285708 from sympy import divisors, gcd %o A285708 from sympy.ntheory.factor_ import core %o A285708 def a007947(n): return max(i for i in divisors(n) if core(i) == i) %o A285708 def a079277(n): %o A285708 k=n - 1 %o A285708 while True: %o A285708 if a007947(k*n) == a007947(n): return k %o A285708 else: k-=1 %o A285708 def a285707(n): return 1 if n==1 else gcd(n, a079277(n)) %o A285708 print([n//a285707(n) for n in range(1, 151)]) # _Indranil Ghosh_, Apr 27 2017 %Y A285708 Cf. A079277, A285707. %K A285708 nonn %O A285708 1,2 %A A285708 _Antti Karttunen_, Apr 26 2017