This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285723 #23 Nov 09 2024 23:45:08 %S A285723 0,1,1,3,0,2,6,2,3,4,10,5,0,5,7,15,9,4,6,8,11,21,14,8,0,9,12,16,28,20, %T A285723 13,7,10,13,17,22,36,27,19,12,0,14,18,23,29,45,35,26,18,11,15,19,24, %U A285723 30,37,55,44,34,25,17,0,20,25,31,38,46,66,54,43,33,24,16,21,26,32,39,47,56,78,65,53,42,32,23,0,27,33,40,48,57,67,91,77,64,52,41,31,22,28,34,41,49,58,68,79 %N A285723 Transpose of square array A285722. %C A285723 See A285722. %H A285723 Antti Karttunen, <a href="/A285723/b285723.txt">Table of n, a(n) for n = 1..7260; the first 120 antidiagonals of the array</a> %F A285723 A(n,k) = A285722(k,n). %e A285723 The top left 14 X 14 corner of the array: %e A285723 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91 %e A285723 1, 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90 %e A285723 2, 3, 0, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89 %e A285723 4, 5, 6, 0, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88 %e A285723 7, 8, 9, 10, 0, 11, 17, 24, 32, 41, 51, 62, 74, 87 %e A285723 11, 12, 13, 14, 15, 0, 16, 23, 31, 40, 50, 61, 73, 86 %e A285723 16, 17, 18, 19, 20, 21, 0, 22, 30, 39, 49, 60, 72, 85 %e A285723 22, 23, 24, 25, 26, 27, 28, 0, 29, 38, 48, 59, 71, 84 %e A285723 29, 30, 31, 32, 33, 34, 35, 36, 0, 37, 47, 58, 70, 83 %e A285723 37, 38, 39, 40, 41, 42, 43, 44, 45, 0, 46, 57, 69, 82 %e A285723 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 0, 56, 68, 81 %e A285723 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 0, 67, 80 %e A285723 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 0, 79 %e A285723 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 0 %t A285723 A[n_, n_] = 0; %t A285723 A[n_, k_] /; k == n - 1 := (k^2 - k + 2)/2; %t A285723 A[1, k_] := (k^2 - 3 k + 4)/2; %t A285723 A[n_, k_] /; 1 <= k <= n - 2 := A[n, k] = A[n, k + 1] + 1; %t A285723 A[n_, k_] /; k > n := A[n, k] = A[n - 1, k] + 1; %t A285723 T[n_, k_] := A[k, n]; %t A285723 Table[T[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *) %o A285723 (Scheme) (define (A285723 n) (A285722bi (A004736 n) (A002260 n))) ;; For A285722bi see A285722. %o A285723 (Python) %o A285723 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A285723 def A(n, k): return 0 if n == k else T(n - k, k) if n>k else T(n, k - n) %o A285723 for n in range(1, 21): print([A(n - k + 1, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 03 2017 %Y A285723 Transpose: A285722. %Y A285723 Cf. A000217 (row 1), A000124 (column 1, from 1 onward). %Y A285723 Cf. also A285733. %K A285723 nonn,tabl %O A285723 1,4 %A A285723 _Antti Karttunen_, May 03 2017