This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285724 #13 Feb 16 2025 08:33:44 %S A285724 1,2,3,4,5,6,7,16,21,10,11,12,13,14,15,16,46,67,78,55,21,22,23,106,25, %T A285724 120,27,28,29,92,31,191,210,34,105,36,37,38,211,80,41,90,231,44,45,46, %U A285724 154,277,379,436,465,406,300,171,55,56,57,58,59,596,61,630,63,64,65,66,67,232,436,631,781,862,903,820,666,465,253,78,79,80,529,212,991,302,85,324,1035,230,561,90,91 %N A285724 Square array read by descending antidiagonals: If n > k, A(n,k) = T(lcm(n,k), gcd(n,k)), otherwise A(n,k) = T(gcd(n,k), lcm(n,k)), where T(n,k) is sequence A000027 considered as a two-dimensional table. %C A285724 The array is read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc. %H A285724 Antti Karttunen, <a href="/A285724/b285724.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array</a> %H A285724 MathWorld, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %F A285724 If n > k, A(n,k) = T(lcm(n,k),gcd(n,k)), otherwise A(n,k) = T(gcd(n,k),lcm(n,k)), where T(n,k) is sequence A000027 considered as a two-dimensional table, that is, as a pairing function from N x N to N. %F A285724 If n < k, A(n,k) = A286101(n,k), otherwise A(n,k) = A286102(n,k). %e A285724 The top left 12 X 12 corner of the array: %e A285724 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67 %e A285724 3, 5, 16, 12, 46, 23, 92, 38, 154, 57, 232, 80 %e A285724 6, 21, 13, 67, 106, 31, 211, 277, 58, 436, 529, 94 %e A285724 10, 14, 78, 25, 191, 80, 379, 59, 631, 212, 947, 109 %e A285724 15, 55, 120, 210, 41, 436, 596, 781, 991, 96, 1486, 1771 %e A285724 21, 27, 34, 90, 465, 61, 862, 302, 193, 467, 2146, 142 %e A285724 28, 105, 231, 406, 630, 903, 85, 1541, 1954, 2416, 2927, 3487 %e A285724 36, 44, 300, 63, 820, 324, 1596, 113, 2557, 822, 3829, 355 %e A285724 45, 171, 64, 666, 1035, 208, 2016, 2628, 145, 4006, 4852, 706 %e A285724 55, 65, 465, 230, 101, 495, 2485, 860, 4095, 181, 5996, 1832 %e A285724 66, 253, 561, 990, 1540, 2211, 3003, 3916, 4950, 6105, 221, 8647 %e A285724 78, 90, 103, 117, 1830, 148, 3570, 375, 739, 1890, 8778, 265 %o A285724 (Scheme) %o A285724 (define (A285724 n) (A285724bi (A002260 n) (A004736 n))) %o A285724 (define (A285724bi row col) (if (> row col) (A000027bi (lcm row col) (gcd row col)) (A000027bi (gcd row col) (lcm row col)))) %o A285724 (define (A000027bi row col) (* (/ 1 2) (+ (expt (+ row col) 2) (- row) (- (* 3 col)) 2))) %Y A285724 Cf. A000124 (row 1), A000217 (column 1), A001844 (main diagonal). %Y A285724 Cf. A000027, A003989, A003990, A003991, A286101, A286102, A286155, A285722. %K A285724 nonn,tabl %O A285724 1,2 %A A285724 _Antti Karttunen_, May 03 2017