This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285730 #19 Jun 12 2025 12:57:44 %S A285730 1,1,2,1,2,3,1,2,3,2,1,2,3,4,5,1,2,3,4,5,3,1,2,3,4,5,6,7,1,2,3,4,5,6, %T A285730 7,2,1,2,3,4,5,6,7,4,3,1,2,3,4,5,6,7,8,9,5,1,2,3,4,5,6,7,8,9,10,11,1, %U A285730 2,3,4,5,6,7,8,9,10,11,3,1,2,3,4,5,6,7,8,9,10,11,6,13,1,2,3,4,5,6,7,8,9,10,11,12,13,7 %N A285730 Square array: If A001222(n) < k, then A(n,k) = n, otherwise A(n,k) = product of k largest prime factors of n (taken with multiplicity), read by descending antidiagonals. %C A285730 Square array A(n,k) [where n is row and k is column] is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc %H A285730 Antti Karttunen, <a href="/A285730/b285730.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a> %F A285730 A(n,1) = A006530(n), for k > 1, A(n,k) = A006530(n) * A(n/A006530(n),k-1). %e A285730 The top left 5x18 corner of the array: %e A285730 1, 1, 1, 1, 1 %e A285730 2, 2, 2, 2, 2 %e A285730 3, 3, 3, 3, 3 %e A285730 2, 4, 4, 4, 4 %e A285730 5, 5, 5, 5, 5 %e A285730 3, 6, 6, 6, 6 %e A285730 7, 7, 7, 7, 7 %e A285730 2, 4, 8, 8, 8 %e A285730 3, 9, 9, 9, 9 %e A285730 5, 10, 10, 10, 10 %e A285730 11, 11, 11, 11, 11 %e A285730 3, 6, 12, 12, 12 %e A285730 13, 13, 13, 13, 13 %e A285730 7, 14, 14, 14, 14 %e A285730 5, 15, 15, 15, 15 %e A285730 2, 4, 8, 16, 16 %e A285730 17, 17, 17, 17, 17 %e A285730 3, 9, 18, 18, 18 %e A285730 For A(18,1) we take just the largest prime factor of 18 = 2*3*3, thus A(18,1) = 3. %e A285730 For A(18,2) we take the product of two largest prime factors of 18 (duplicates not discarded), thus A(18,2) = 3*3 = 9. %e A285730 For A(18,3) we take the product of three largest prime factors of 18, thus A(18,2) = 3*3*2 = 18. %t A285730 With[{nn = 14}, Function[s, Table[s[[#, k]] &[n - k + 1], {n, nn}, {k, n, 1, -1}]]@ MapIndexed[PadRight[#1, nn, First@ #2] &, Table[FoldList[Times, Reverse@ Flatten[FactorInteger[n] /. {p_, e_} /; e > 0 :> ConstantArray[p, e]]], {n, nn}]]] // Flatten (* _Michael De Vlieger_, Apr 28 2017 *) %o A285730 (Scheme) %o A285730 (define (A285730 n) (A285730bi (A002260 n) (A004736 n))) %o A285730 (define (A285730bi row col) (let loop ((n row) (k col) (m 1)) (if (zero? k) m (loop (/ n (A006530 n)) (- k 1) (* m (A006530 n)))))) %o A285730 ;; Alternatively, implemented with the given recurrence formula: %o A285730 (define (A285730bi row col) (if (= 1 col) (A006530 row) (* (A006530 row) (A285730bi (A052126 row) (- col 1))))) %o A285730 (Python) %o A285730 from sympy import primefactors %o A285730 def a006530(n): return 1 if n==1 else max(primefactors(n)) %o A285730 def A(n, k): return a006530(n) if k==1 else a006530(n)*A(n//a006530(n), k - 1) %o A285730 for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, Apr 28 2017 %Y A285730 Transpose: A285731. %Y A285730 Cf. A006530 (the leftmost column). %Y A285730 Cf. A001222, A052126. %K A285730 nonn,tabl %O A285730 1,3 %A A285730 _Antti Karttunen_, Apr 28 2017