This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285732 #21 Feb 16 2025 08:33:44 %S A285732 -1,1,1,2,-2,3,4,3,2,6,7,5,-3,5,10,11,8,6,4,9,15,16,12,9,-4,8,14,21, %T A285732 22,17,13,10,7,13,20,28,29,23,18,14,-5,12,19,27,36,37,30,24,19,15,11, %U A285732 18,26,35,45,46,38,31,25,20,-6,17,25,34,44,55,56,47,39,32,26,21,16,24,33,43,54,66,67,57,48,40,33,27,-7,23,32,42,53,65,78 %N A285732 Square array A(n,k) read by antidiagonals, A(n,n) = -n, otherwise, if n > k, A(n,k) = T(n-k,k), else A(n,k) = T(n,k-n), where T(n,k) is sequence A000027 considered as a two-dimensional table. %C A285732 The array is read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc. %H A285732 Antti Karttunen, <a href="/A285732/b285732.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of the array</a> %H A285732 MathWorld, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %F A285732 If n = k, A(n,k) = -n, if n > k, A(n,k) = T(n-k,k), otherwise [when n < k], A(n,k) = T(n,k-n), where T(n,k) is sequence A000027 considered as a two-dimensional table, that is, as a pairing function from N X N to N. %F A285732 A(n,k) = A285722(n,k) - A286100(n,k). %e A285732 The top left 14 X 14 corner of the array: %e A285732 -1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79 %e A285732 1, -2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80 %e A285732 3, 2, -3, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81 %e A285732 6, 5, 4, -4, 10, 14, 19, 25, 32, 40, 49, 59, 70, 82 %e A285732 10, 9, 8, 7, -5, 15, 20, 26, 33, 41, 50, 60, 71, 83 %e A285732 15, 14, 13, 12, 11, -6, 21, 27, 34, 42, 51, 61, 72, 84 %e A285732 21, 20, 19, 18, 17, 16, -7, 28, 35, 43, 52, 62, 73, 85 %e A285732 28, 27, 26, 25, 24, 23, 22, -8, 36, 44, 53, 63, 74, 86 %e A285732 36, 35, 34, 33, 32, 31, 30, 29, -9, 45, 54, 64, 75, 87 %e A285732 45, 44, 43, 42, 41, 40, 39, 38, 37, -10, 55, 65, 76, 88 %e A285732 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, -11, 66, 77, 89 %e A285732 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, -12, 78, 90 %e A285732 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, -13, 91 %e A285732 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, -14 %o A285732 (Scheme) %o A285732 (define (A285732 n) (A285732bi (A002260 n) (A004736 n))) %o A285732 (define (A285732bi row col) (cond ((= row col) (- row)) ((> row col) (A000027bi (- row col) col)) (else (A000027bi row (- col row))))) %o A285732 (Python) %o A285732 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A285732 def A(n, k): return -n if n == k else T(n - k, k) if n>k else T(n, k - n) %o A285732 for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 03 2017 %Y A285732 Transpose: A285733. %Y A285732 Cf. A000124 (row 1, after -1), A000217 (column 1, after -1). %Y A285732 Cf. also A000027, A003989, A072030, A285721, A285722, A286100. %K A285732 sign,tabl %O A285732 1,4 %A A285732 _Antti Karttunen_, May 03 2017