A285769 (Product of distinct prime factors)^(Product of prime exponents).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 13, 14, 15, 16, 17, 36, 19, 100, 21, 22, 23, 216, 25, 26, 27, 196, 29, 30, 31, 32, 33, 34, 35, 1296, 37, 38, 39, 1000, 41, 42, 43, 484, 225, 46, 47, 1296, 49, 100, 51, 676, 53, 216, 55, 2744, 57, 58, 59, 900, 61, 62, 441
Offset: 1
Examples
a(2) = 2 since (2)^(1) = 2^1 = 2. a(6) = 6 since (2*3)^(1*1) = 6^1 = 6. a(12) = 36 since (2*3)^(2*1) = 6^2 = 36. a(30) = 30 since (2*3*5)^(1*1*1) = 30^1 = 30. a(144) = 1679616 since (2*3)^(4*2) = 6^8 = 1679616.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[Power @@ Map[Times @@ # &, Transpose@ FactorInteger@ #] &, 63] (* Michael De Vlieger, Apr 25 2017 *)
-
Python
from sympy import divisor_count, divisors from sympy.ntheory.factor_ import core def rad(n): return max(list(filter(lambda i: core(i) == i, divisors(n)))) def a(n): return rad(n)**divisor_count(n/rad(n)) # Indranil Ghosh, Apr 26 2017
Comments