This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285787 #28 Apr 27 2017 05:49:34 %S A285787 3,2,8,17,32,97,128,257,769,2048,4097,6144,8192,40961,73728,65537, %T A285787 131072,524289,524288,3145728,6291456,8388608,18874368,50331648, %U A285787 113246209,167772161,268435457,805306368,1610612737,2147483649,2147483648,17179869184,21474836480 %N A285787 Least number k such that the absolute value of the difference between the number of prime factors, with multiplicity, of k and k-1 is equal to n. %C A285787 a(n) <= A051900(n), with equality for n=3,5,7,8,13,15. - _Robert Israel_, Apr 26 2017 %H A285787 Giovanni Resta, <a href="/A285787/b285787.txt">Table of n, a(n) for n = 0..40</a> %F A285787 Least solutions of the equation abs(A001222(k) - A001222(k-1)) = n. %e A285787 a(9) = 2048 because 2047 = 23 * 89, 2048 = 2^11 and 11 - 2 = 9. %p A285787 with(numtheory): P:=proc(q) local a,b,k,v; v:=array(0..100); %p A285787 for k from 0 to 100 do v[k]:=0; od; a:=0; %p A285787 for k from 2 to q do b:=bigomega(k); if v[abs(b-a)]=0 then v[abs(b-a)]:=k; fi; a:=b; od; k:=0; %p A285787 while v[k]>0 do print(v[k]); k:=k+1; od; print(); end: P(10^6); %t A285787 s = PrimeOmega@ Range[10^6]; 1 + First /@ Values@ KeySort@ PositionIndex@ Flatten@ Map[Abs@ Differences@ # &, Partition[s, 2, 1]] (* _Michael De Vlieger_, Apr 26 2017, Version 10 *) %Y A285787 Cf. A001222, A051900, A076191, A285457. %K A285787 nonn %O A285787 0,1 %A A285787 _Paolo P. Lava_, Apr 26 2017 %E A285787 a(24)-a(32) from _Giovanni Resta_, Apr 26 2017