cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285788 Irregular triangle T(n,m): nonprime 1 <= k <= n such that n and k are coprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 1, 4, 8, 1, 9, 1, 4, 6, 8, 9, 10, 1, 1, 4, 6, 8, 9, 10, 12, 1, 9, 1, 4, 8, 14, 1, 9, 15, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 1, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 1, 9, 1, 4, 8, 10, 16, 20, 1, 9, 15, 21, 1, 4, 6, 8, 9, 10
Offset: 1

Views

Author

Michael De Vlieger, Apr 26 2017

Keywords

Comments

Row n is a subset of A038566(n) such that the union of a(n) and A112484(n) = A038566(n).
Row lengths are A048864(n) = A000010(n)-(A000720(n)-A001221(n)), i.e., phi(n)-(pi(n)-omega(n)).
1 appears in every row since 1 is not prime and coprime to all n.
4 is the smallest composite and appears first in row 5 since 4 divides 4.
Rows that contain the single term 1 are in A048597; the largest n = 30 such that the only term is 1.
For prime p, row p contains 1 and all composites k < p, since 1 < m < p are coprime to p.

Examples

			Triangle begins:
  n\m  1  2   3   4  5   6   7
   1:  1
   2:  1
   3:  1
   4:  1
   5:  1  4
   6:  1
   7:  1  4   6
   8:  1
   9:  1  4   8
  10:  1  9
  11:  1  4   6   8  9  10
  12:  1
  13:  1  4   6   8  9  10  12
  14:  1  9
  15:  1  4   8  14
  16:  1  9  15
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range@ n, And[! PrimeQ@ #, CoprimeQ[#, n]] &], {n, 23}] // Flatten
  • Python
    from sympy import gcd, isprime
    def a(n): return list(filter(lambda k: isprime(k)==0 and gcd(k, n)==1, range(1, n + 1)))
    for n in range(1, 21): print(a(n)) # Indranil Ghosh, Apr 26 2017