A285791 Primes equal to a heptagonal number plus 1.
2, 19, 113, 149, 541, 617, 971, 1289, 1783, 2357, 3011, 3187, 5689, 6427, 7481, 7757, 9829, 12497, 12853, 14327, 15881, 17099, 18793, 21023, 24851, 28463, 30637, 31193, 45361, 50909, 54539, 60607, 63761, 66179, 69473, 70309, 83449, 88079, 90917, 91873, 94771
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Programs
-
PARI
pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number maxk=300; L=List(); for(k=1, maxk, if(isprime(p=pg(7, k) + 1), listput(L, p))); Vec(L)
-
Python
from sympy import isprime def heptagonal(n): return n*(5*n-3)//2 def aupto(limit): alst, n, hn = [], 1, heptagonal(1) while hn < limit: if isprime(hn+1): alst.append(hn+1) n, hn = n+1, heptagonal(n+1) return alst print(aupto(94771)) # Michael S. Branicky, Feb 19 2021