A285800 Numbers having more than one odd prime factor to an odd power in their prime factorization.
15, 21, 30, 33, 35, 39, 42, 51, 55, 57, 60, 65, 66, 69, 70, 77, 78, 84, 85, 87, 91, 93, 95, 102, 105, 110, 111, 114, 115, 119, 120, 123, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 154, 155, 156, 159, 161, 165, 168, 170, 174, 177, 182, 183, 185, 186
Offset: 1
Examples
15 = 3*5, 21 = 3*7, 30 = 2*15, 33 = 3*11 are the smallest positive integers having at least two prime factors to an odd power in their factorization. a(10) = 57, a(100) = 287, a(10^3) = 1950, a(10^4) = 15701, a(10^5) = 138540, a(10^6) = 1284998.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..19999
Programs
-
Maple
s800:=[]; s801:=[1]; for n from 2 to 1000 do c:=0; t2:=ifactors(n)[2]; for t3 in t2 do if t3[1]>2 and (t3[2] mod 2 = 1) then c:=c+1; fi; od: if c <= 1 then s801:=[op(s801),n]; else s800:=[op(s800),n]; fi; od: s800; # A285800 s801; # A285801 - N. J. A. Sloane, Sep 30 2017
-
PARI
is(n)=1<#select(t->bittest(t,0),factor(n>>valuation(n,2))[,2])
Comments