cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A285810 Primes equal to a centered pentagonal number plus 1.

Original entry on oeis.org

2, 7, 17, 107, 227, 277, 457, 857, 1627, 3517, 4517, 5407, 9767, 11057, 13877, 15017, 16607, 20477, 23767, 26267, 27827, 35107, 37517, 41927, 42577, 50767, 53657, 58907, 62017, 68477, 79657, 83267, 86027, 93607, 98507, 110777, 113957, 128257, 137477, 145807
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    maxk=600; L=List(); for(k=1, maxk, if(isprime(p=cpg(5, k) + 1), listput(L, p))); Vec(L)

A285811 Primes equal to a centered heptagonal number plus 1.

Original entry on oeis.org

2, 23, 107, 149, 317, 1619, 2459, 3257, 3929, 5189, 6029, 6323, 7247, 15017, 19427, 21023, 21569, 26189, 42737, 45887, 55127, 56009, 63317, 66173, 67139, 70079, 82469, 101747, 105359, 110273, 125687, 136523, 137909, 149249, 155087, 159539, 167099, 171719
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Comments

Primes in A209294. - Omar E. Pol, Apr 27 2017

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    maxk=600; L=List(); for(k=1, maxk, if(isprime(p=cpg(7, k) + 1), listput(L, p))); Vec(L)

A285812 Primes equal to a centered 9-gonal number plus 1.

Original entry on oeis.org

2, 11, 29, 137, 191, 821, 947, 2081, 2927, 3917, 5051, 6329, 11027, 13367, 14879, 15401, 17021, 17579, 21737, 22367, 24977, 36857, 39341, 43661, 47279, 50087, 58997, 62129, 66431, 70877, 95267, 96581, 106031, 113051, 117371, 129287, 130817, 135461, 156521
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    maxk=600; L=List(); for(k=1, maxk, if(isprime(p=cpg(9, k) + 1), listput(L, p))); Vec(L)
Showing 1-3 of 3 results.