This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285815 #33 May 09 2021 11:58:00 %S A285815 1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,54,60,63,72,81,90, %T A285815 108,120,162,180,216,243,270,324,360,486,540,648,810,972,1080,1458, %U A285815 1620,1944,2430,2916,3240,4374,4860,5832,7290,8748,9720,13122,14580,17496 %N A285815 Numbers k such that, for any divisor d of k, the digital sum of d divides k. %C A285815 All terms are Niven numbers (A005349). %C A285815 All terms > 1 have a prime divisor < 10. %C A285815 Is this sequence infinite? %C A285815 Some families of terms: %C A285815 - 2*3^k with 0 <= k <= 12, %C A285815 - 2*3^k*5 with 0 <= k <= 10, %C A285815 - 2^2*3^k with 0 <= k <= 13, %C A285815 - 2^2*3^k*5 with 0 <= k <= 22, %C A285815 - 2^3*3^k with 0 <= k <= 13, %C A285815 - 2^3*3^k*5 with 0 <= k <= 22, %C A285815 - 3^k with 0 <= k <= 5. %C A285815 The first 99 terms are 7-smooth (A002473). %C A285815 From _David A. Corneth_, Apr 20 2021: (Start) %C A285815 Let k be a term. If 11|k then (1+1)=2|k so 22|k. Similarily if 22|k then 44|k. If 44|k then 88|k. If 88|k then 176|k. If 176|k then (1+7+6) = 14|k so lcm(176, 14) = 1232. Repeating this a few times we see k > 10^43. %C A285815 Can we use this to prove if p|k then p <= 7 where p is a prime and k is a term? %C A285815 (End) %H A285815 Rémy Sigrist, <a href="/A285815/b285815.txt">Table of n, a(n) for n = 1..99</a> %H A285815 David A. Corneth, <a href="/A285815/a285815.gp.txt">Conjectured full sequence with 108 terms. All 9973-smooth terms <= 10^30</a>. %e A285815 The divisors of 243 are: 1, 3, 9, 27, 81, 243; their digital sums are: 1, 3, 9, 9, 9, 9, all divisors of 243; hence 243 is in the sequence. %e A285815 14 divides 42, but its digital sum, 5, does not divide 42; hence 42 is not in the sequence. %o A285815 (PARI) is(n) = fordiv(n, d, if (n % sumdigits(d), return (0))); return (1) %o A285815 (Python) %o A285815 from sympy import divisors %o A285815 from sympy.ntheory.factor_ import digits %o A285815 def ok(n): %o A285815 return all(n%sum(digits(d)[1:])==0 for d in divisors(n)) %o A285815 print([n for n in range(1, 20001) if ok(n)]) # _Indranil Ghosh_, Apr 28 2017 %Y A285815 Cf. A002473, A005349. %K A285815 nonn,base %O A285815 1,2 %A A285815 _Rémy Sigrist_, Apr 27 2017