A285845 Powers (A001597) that are also cyclops numbers (A134808).
11025, 19044, 21025, 24025, 32041, 38025, 42025, 47089, 51076, 58081, 59049, 65025, 66049, 67081, 74088, 75076, 87025, 93025, 1110916, 1140624, 1170724, 1190281, 1240996, 1270129, 1290496, 1340964, 1350244, 1380625, 1420864, 1430416, 1490841, 1510441
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1156 terms from Robert G. Wilson v)
Programs
-
Mathematica
Select[NestList[If[# == 1, 4, Min@ Table[(Floor[#^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ #}]] &, 1, 1400], Function[n, And[OddQ@ Length@ #, #[[ Ceiling[Length[#]/2] ]] == 0, DigitCount[n, 10, 0] == 1] &@ IntegerDigits@ n]] (* Michael De Vlieger, Apr 27 2017, after Robert G. Wilson v at A001597 *) cyclopsQ[n_Integer, b_: 10] := Module[{digitList = IntegerDigits[n, b], len, pos0s, flag}, len = Length[digitList]; pos0s = Select[Range[len], digitList[[#]] == 0 &]; flag = OddQ[len] && (Length[pos0s] == 1) && (pos0s == {(len + 1)/2}); Return[flag]]; (* from Alonso del Arte in A134808 *) min = 0; max = 1520000; t = Union@ Flatten@ Table[n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}]; Select[t, cyclopsQ] (* Robert G. Wilson v, Apr 27 2017 *)
-
PARI
is_cyclops(k) = { if(k==0, return(1)); my(d=digits(k), j); if(#d%2==0 || d[#d\2+1]!=0, return(0)); for(j=1, #d\2, if(d[j]==0, return(0))); for(j=#d\2+2, #d, if(d[j]==0, return(0))); return(1)} L=List(); for(n=1, 100000, if(ispower(n) && is_cyclops(n), listput(L, n))); Vec(L)
Comments