This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285852 #19 Jul 22 2020 16:49:24 %S A285852 1,0,0,0,0,3,0,0,0,6,3,0,0,14,12,1,0,36,39,6,0,98,120,25,0,276,363,90, %T A285852 0,794,1092,301,0,2316,3279,966,0,6818,9840,3025,0,20196,29523,9330,0, %U A285852 60074,88572,28501,0,179196,265719,86526 %N A285852 Rectangular array read by rows: T(n,k) is the number of words of length n on alphabet {0,1,2} that have exactly k records, n>=0, 0<=k<=3. %C A285852 A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all i<j. %H A285852 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009. %F A285852 G.f.: Product_{j=1..3} (1 + y*x/(1 - j*x)). Generally for words on alphabet {0,1,...,r} the o.g.f. is Product_{j=1..r} (1 + y*x/(1 - j*x)). %e A285852 1, 0, 0, 0; %e A285852 0, 3, 0, 0; %e A285852 0, 6, 3, 0; %e A285852 0, 14, 12, 1; %e A285852 0, 36, 39, 6; %e A285852 0, 98, 120, 25; %e A285852 0, 276, 363, 90; %e A285852 0, 794, 1092, 301; %e A285852 0, 2316, 3279, 966; %t A285852 nn = 12;CoefficientList[Series[Product[1 + u z/(1 - j z), {j, 1, 3}], {z, 0, nn}], {z,u}] // Grid %Y A285852 Column k=0 gives A000007. %Y A285852 Column k=1 gives A001550. %Y A285852 Column k=2 gives A029858. %Y A285852 Column k=3 gives A000392. %Y A285852 Row sums give A000244. %K A285852 nonn,tabf %O A285852 0,6 %A A285852 _Geoffrey Critzer_, Apr 27 2017