This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285854 #13 May 30 2018 06:06:50 %S A285854 1,18,105,1005,6762,61572,558548,5807700,62757288,777291768, %T A285854 9831740256,139111566048,2048834965824,32758018496640,545051532176640, %U A285854 9812211976039680,182219827628874240,3627461543458659840,74765368810365696000,1632210845693218560000 %N A285854 Number of permutations of [n] with three ordered cycles such that equal-sized cycles are ordered with increasing least elements. %H A285854 Alois P. Heinz, <a href="/A285854/b285854.txt">Table of n, a(n) for n = 3..450</a> %H A285854 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %p A285854 b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, %p A285854 (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat %p A285854 [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 4) %p A285854 end: %p A285854 a:= n-> coeff(b(n$2, 0), x, 3): %p A285854 seq(a(n), n=3..25); %t A285854 multinomial[n_, k_List] := n!/Times @@ (k!); %t A285854 b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 4}]; %t A285854 a[n_] := Coefficient[b[n, n, 0], x, 3]; %t A285854 Table[a[n], {n, 3, 25}] (* _Jean-François Alcover_, May 30 2018, from Maple *) %Y A285854 Column k=3 of A285849. %Y A285854 Cf. A285918. %K A285854 nonn %O A285854 3,2 %A A285854 _Alois P. Heinz_, Apr 27 2017