This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285859 #13 May 30 2018 07:18:22 %S A285859 1,288,19560,921360,37423914,1124673264,34065856396,1010435626200, %T A285859 27564092244689,746494701977024,20568917530438368,575594436161070144, %U A285859 15985318079107792576,452561731064312392320,12942265817549110947520,383915932720263224659840 %N A285859 Number of permutations of [n] with eight ordered cycles such that equal-sized cycles are ordered with increasing least elements. %H A285859 Alois P. Heinz, <a href="/A285859/b285859.txt">Table of n, a(n) for n = 8..450</a> %H A285859 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %p A285859 b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, %p A285859 (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat %p A285859 [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 9) %p A285859 end: %p A285859 a:= n-> coeff(b(n$2, 0), x, 8): %p A285859 seq(a(n), n=8..25); %t A285859 multinomial[n_, k_List] := n!/Times @@ (k!); %t A285859 b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 9}]; %t A285859 a[n_] := Coefficient[b[n, n, 0], x, 8]; %t A285859 Table[a[n], {n, 8, 25}] (* _Jean-François Alcover_, May 30 2018, from Maple *) %Y A285859 Column k=8 of A285849. %Y A285859 Cf. A285923. %K A285859 nonn %O A285859 8,2 %A A285859 _Alois P. Heinz_, Apr 27 2017