This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285861 #13 May 30 2018 08:06:05 %S A285861 1,550,71225,5448300,355885530,17364367020,748875613200, %T A285861 31800834780000,1237174959934485,46053097166277630, %U A285861 1673378033771898675,61000413008705597700,2201843172941618228220,79401490178154061870920,2850407051830237872094980 %N A285861 Number of permutations of [n] with ten ordered cycles such that equal-sized cycles are ordered with increasing least elements. %H A285861 Alois P. Heinz, <a href="/A285861/b285861.txt">Table of n, a(n) for n = 10..450</a> %H A285861 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %p A285861 b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, %p A285861 (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat %p A285861 [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 11) %p A285861 end: %p A285861 a:= n-> coeff(b(n$2, 0), x, 10): %p A285861 seq(a(n), n=10..25); %t A285861 multinomial[n_, k_List] := n!/Times @@ (k!); %t A285861 b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 11}]; %t A285861 a[n_] := Coefficient[b[n, n, 0], x, 10]; %t A285861 Table[a[n], {n, 10, 25}] (* _Jean-François Alcover_, May 30 2018, from Maple *) %Y A285861 Column k=10 of A285849. %Y A285861 Cf. A285925. %K A285861 nonn %O A285861 10,2 %A A285861 _Alois P. Heinz_, Apr 27 2017