A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).
1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..300
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Programs
-
Maple
seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
-
Mathematica
Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
PARI
a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
-
Python
from sympy import bernoulli def a(n): return -3 if n == 1 else (3**n * bernoulli(n)).numerator print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
Comments