cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285865 Denominator of the coefficient triangle B2(n, m) of generalized Bernoulli polynomials PB2(n, x) read by rows.

This page as a plain text file.
%I A285865 #18 Jun 27 2025 15:30:01
%S A285865 1,1,1,3,1,1,1,1,1,1,15,1,1,1,1,1,3,1,3,1,1,21,1,1,1,1,1,1,1,3,1,3,1,
%T A285865 1,1,1,15,1,3,1,3,1,3,1,1,1,5,1,1,1,5,1,1,1,1,33,1,1,1,1,1,1,1,1,1,1
%N A285865 Denominator of the coefficient triangle B2(n, m) of generalized Bernoulli polynomials PB2(n, x) read by rows.
%C A285865 The numerator triangle is given in A285864, where details are given.
%F A285865 a(n, m) = denominator(B2(n, m)) with B2(n, m) = binomial(m, m)*2^(n-m)*B(n-m), with the Bernoulli numbers B(k) = A027641(k)/A027642(k).
%F A285865 E.g.f. of the rational column sequences {B2(n, m)}_{n>=0} is  2*x/(exp(2*x) - 1)*x^m/m!. Here a(n, m) are the denominators of the exponentially generated sequence.
%e A285865 The triangle a(n, m) begins:
%e A285865 n\m   0 1 2 3 4 5 6 7 8 9 10 ...
%e A285865 0:    1
%e A285865 1:    1 1
%e A285865 2:    3 1 1
%e A285865 3:    1 1 1 1
%e A285865 4:   15 1 1 1 1
%e A285865 5:    1 3 1 3 1 1
%e A285865 6:   21 1 1 1 1 1 1
%e A285865 7:    1 3 1 3 1 1 1 1
%e A285865 8:   15 1 3 1 3 1 3 1 1
%e A285865 9:    1 5 1 1 1 5 1 1 1 1
%e A285865 10:  33 1 1 1 1 1 1 1 1 1  1
%e A285865 ...
%e A285865 For the triangle of the rationals B2(n, m) see A285864.
%t A285865 T[n_, m_]:=Denominator[Binomial[n, m]*2^(n - m)*BernoulliB[n - m]]; Table[T[n, m], {n, 0, 20}, {m, 0, n}] // Flatten (* _Indranil Ghosh_, May 06 2017 *)
%o A285865 (PARI) T(n, m) = denominator(binomial(n, m)*2^(n - m)*bernfrac(n - m));
%o A285865 for(n=0, 20, for(m=0, n, print1(T(n, m),", ");); print();) \\ _Indranil Ghosh_, May 06 2017
%o A285865 (Python)
%o A285865 from sympy import binomial, bernoulli
%o A285865 def T(n, m):
%o A285865     return (binomial(n, m) * 2**(n - m) * bernoulli(n - m)).denominator
%o A285865 for n in range(21): print([T(n, m) for m in range(n + 1)]) # _Indranil Ghosh_, May 06 2017
%Y A285865 Cf. A027641/A027642, A285864.
%K A285865 nonn,easy,tabl,frac
%O A285865 0,4
%A A285865 _Wolfdieter Lang_, May 03 2017