This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285865 #18 Jun 27 2025 15:30:01 %S A285865 1,1,1,3,1,1,1,1,1,1,15,1,1,1,1,1,3,1,3,1,1,21,1,1,1,1,1,1,1,3,1,3,1, %T A285865 1,1,1,15,1,3,1,3,1,3,1,1,1,5,1,1,1,5,1,1,1,1,33,1,1,1,1,1,1,1,1,1,1 %N A285865 Denominator of the coefficient triangle B2(n, m) of generalized Bernoulli polynomials PB2(n, x) read by rows. %C A285865 The numerator triangle is given in A285864, where details are given. %F A285865 a(n, m) = denominator(B2(n, m)) with B2(n, m) = binomial(m, m)*2^(n-m)*B(n-m), with the Bernoulli numbers B(k) = A027641(k)/A027642(k). %F A285865 E.g.f. of the rational column sequences {B2(n, m)}_{n>=0} is 2*x/(exp(2*x) - 1)*x^m/m!. Here a(n, m) are the denominators of the exponentially generated sequence. %e A285865 The triangle a(n, m) begins: %e A285865 n\m 0 1 2 3 4 5 6 7 8 9 10 ... %e A285865 0: 1 %e A285865 1: 1 1 %e A285865 2: 3 1 1 %e A285865 3: 1 1 1 1 %e A285865 4: 15 1 1 1 1 %e A285865 5: 1 3 1 3 1 1 %e A285865 6: 21 1 1 1 1 1 1 %e A285865 7: 1 3 1 3 1 1 1 1 %e A285865 8: 15 1 3 1 3 1 3 1 1 %e A285865 9: 1 5 1 1 1 5 1 1 1 1 %e A285865 10: 33 1 1 1 1 1 1 1 1 1 1 %e A285865 ... %e A285865 For the triangle of the rationals B2(n, m) see A285864. %t A285865 T[n_, m_]:=Denominator[Binomial[n, m]*2^(n - m)*BernoulliB[n - m]]; Table[T[n, m], {n, 0, 20}, {m, 0, n}] // Flatten (* _Indranil Ghosh_, May 06 2017 *) %o A285865 (PARI) T(n, m) = denominator(binomial(n, m)*2^(n - m)*bernfrac(n - m)); %o A285865 for(n=0, 20, for(m=0, n, print1(T(n, m),", ");); print();) \\ _Indranil Ghosh_, May 06 2017 %o A285865 (Python) %o A285865 from sympy import binomial, bernoulli %o A285865 def T(n, m): %o A285865 return (binomial(n, m) * 2**(n - m) * bernoulli(n - m)).denominator %o A285865 for n in range(21): print([T(n, m) for m in range(n + 1)]) # _Indranil Ghosh_, May 06 2017 %Y A285865 Cf. A027641/A027642, A285864. %K A285865 nonn,easy,tabl,frac %O A285865 0,4 %A A285865 _Wolfdieter Lang_, May 03 2017