A285866 a(n) = numerator((-2)^n*Sum_{k=0..n} binomial(n,k) * Bernoulli(k, 1/2)).
1, -2, 11, -6, 127, -10, 221, -14, 367, -18, -1895, -22, 1447237, -26, -57253, -30, 118526399, -34, -5749677193, -38, 91546283957, -42, -1792042789427, -46, 1982765468376757, -50, -286994504449237, -54, 3187598676787485443, -58, -4625594554880206360895, -62
Offset: 0
Crossrefs
Programs
-
Maple
a := n -> numer((-2)^n*add(binomial(n,k)*bernoulli(k,1/2), k=0..n)): seq(a(n), n=0..31); # Peter Luschny, Jul 24 2020
-
Mathematica
a[n_] := (-2)^n Sum[Binomial[n, k] BernoulliB[k, 1/2], {k, 0, n}] // Numerator; Table[a[n], {n, 0, 31}] (* Peter Luschny, Jul 24 2020 *)
-
SageMath
# uses [gen_bernoulli_number from A157811] print([numerator((-1)^n*gen_bernoulli_number(n, 2)) for n in range(33)]) # Peter Luschny, Mar 26 2021
Formula
Extensions
More terms from Indranil Ghosh, May 06 2017
New name by Peter Luschny, Jul 24 2020
Comments