A285867 Triangle T(n, k) read by rows: T(n, k) = S2(n, k)*k! + S2(n, k-1)*(k-1)! with the Stirling2 triangle S2 = A048993.
1, 0, 1, 0, 1, 3, 0, 1, 7, 12, 0, 1, 15, 50, 60, 0, 1, 31, 180, 390, 360, 0, 1, 63, 602, 2100, 3360, 2520, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 0, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 0, 1, 1023, 57002, 874500, 5921520, 21538440, 46070640, 59875200, 46569600, 19958400
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 0 1 2: 0 1 3 3: 0 1 7 12 4: 0 1 15 50 60 5: 0 1 31 180 390 360 6: 0 1 63 602 2100 3360 2520 7: 0 1 127 1932 10206 25200 31920 20160 8: 0 1 255 6050 46620 166824 317520 332640 181440 9: 0 1 511 18660 204630 1020600 2739240 4233600 3780000 1814400 ...
Programs
-
Mathematica
Table[If[k == 0, Boole[n == 0], StirlingS2[n, k] k! + StirlingS2[n, k - 1] (k - 1)!], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, May 08 2017 *)
Formula
T(0, 0) = 1 and T(n, k) = Stirling2(n+1, k)*(k-1)! for n >= k >= 1. For Stirling2 see A048993. Stirling2(n, k)*(k-1)! = A028246(n, k) for n >= k >= 1.
Recurrence: T(0, 0) = 1, T(n, n) = (n+1)!/2, T(n, -1) = 0, T(n, k) = 0 if n < k, and T(n, k) = (k-1)*T(n-1, k-1) + k*T(n-1, k), for n > k >= 0.
E.g.f. for column k=0 is 1, and for k >= 1: Sum_{j=1..k}((-1)^(k-j) * binomial(k-1, j-1) * exp(j*x)) - x^(k-1).
O.g.f. for column k = 0 is 1, and for k >= 1: ((k-1)!*x^(k-1) / Product_{j=1..k} (1-j*x)) - (k-1)!*x^(k-1).
Comments