cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285869 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial in the open interval (-sqrt(2), +sqrt(2)).

This page as a plain text file.
%I A285869 #43 May 13 2025 11:57:37
%S A285869 0,1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,
%T A285869 15,16,15,16,17,18,17,18,19,20,19,20,21,22,21,22,23,24,23,24,25,26,25,
%U A285869 26,27,28,27,28,29,30,29,30,31,32,31,32,33,34,33,34
%N A285869 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial in the open interval (-sqrt(2), +sqrt(2)).
%C A285869 See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by _Michel Lagneau_ (see A008611) on Fibonacci polynomials.
%H A285869 G. C. Greubel, <a href="/A285869/b285869.txt">Table of n, a(n) for n = 0..1000</a>
%H A285869 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A285869 a(n) = 2*b(n) if n is even, else a(n) = 1 + 2*b(n), with b(n) = floor(n/2) - floor((n + 1)/4) = A059169(n+1).
%F A285869 G.f. for {b(n)}: Sum_{n>=0} b(n)*x^n = x^2*(1 - x + x^2)/((1 - x)*(1 - x^4)) (see A059169).
%F A285869 From _Colin Barker_, May 18 2017: (Start)
%F A285869 G.f.: x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)).
%F A285869 a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
%F A285869 (End)
%F A285869 a(n) = A162330(n-1) for n >= 2. - _Michel Marcus_, Nov 01 2017
%F A285869 Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) (A016627). - _Amiram Eldar_, Sep 17 2023
%F A285869 a(n) = A183041(n-1) for n>=2. - _R. J. Mathar_, May 13 2025
%t A285869 Table[2 (Floor[n/2] - Floor[(n + 1)/4]) + Boole[OddQ@ n], {n, 0, 52}] (* _Michael De Vlieger_, May 10 2017 *)
%o A285869 (PARI) concat(0, Vec(x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100))) \\ _Colin Barker_, May 18 2017
%Y A285869 Cf. A008611, A016627, A049310, A059169, A162330, A183041.
%K A285869 nonn,easy
%O A285869 0,3
%A A285869 _Wolfdieter Lang_, May 10 2017