cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285872 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-sqrt(3), +sqrt(3)).

This page as a plain text file.
%I A285872 #24 Sep 08 2022 08:46:19
%S A285872 0,1,2,3,4,3,4,5,6,7,8,7,8,9,10,11,12,11,12,13,14,15,16,15,16,17,18,
%T A285872 19,20,19,20,21,22,23,24,23,24,25,26,27,28,27,28,29,30,31,32,31,32,33,
%U A285872 34,35,36,35,36,37,38,39,40,39,40,41,42,43,44,43,44,45
%N A285872 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-sqrt(3), +sqrt(3)).
%C A285872 See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by _Michel Lagneau_ (see A008611) on Fibonacci polynomials.
%H A285872 G. C. Greubel, <a href="/A285872/b285872.txt">Table of n, a(n) for n = 0..1000</a>
%H A285872 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).
%F A285872 a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A285870(n). See the g.f. for {b(n)}_{n>=0} there.
%F A285872 From _Colin Barker_, May 18 2017: (Start)
%F A285872 G.f.: x*(1 + x + x^2 + x^3 - x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
%F A285872 a(n) = a(n-1) + a(n-6) - a(n-7) for n>6.
%F A285872 (End)
%e A285872 n = 3: S(3, x) = x*(-2 + x^2), with all three zeros (-sqrt(2), 0, +sqrt(2)) in the interval (-sqrt(3), +sqrt(3)).
%e A285872 n = 4: S(4, x) = 1 - 3*x^2 + x^4, all four zeros  (-phi, -1/phi, 1/phi, phi) with phi = (1 + sqrt(5))/2, approximately 1.618, lie in the interval.
%e A285872 n = 6, two zeros of  S(6, x) = -1 + 6*x^2 - 5*x^4 + x^6 are out of the interval (-sqrt(3), +sqrt(3)), namely - 1.8019... and +1.8019... .
%t A285872 CoefficientList[Series[x*(1+x+x^2+x^3-x^4+x^5)/((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Mar 08 2018 *)
%o A285872 (PARI) concat(0, Vec(x*(1 + x + x^2 + x^3 - x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ _Colin Barker_, May 18 2017
%o A285872 (Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+x^2+x^3-x^4+x^5)/((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)))); // _G. C. Greubel_, Mar 08 2018
%Y A285872 Cf. A008611(n-1) (1), A049310, A285869 (sqrt(2)), A285870.
%K A285872 nonn
%O A285872 0,3
%A A285872 _Wolfdieter Lang_, May 12 2017