A285886 Primes of the form (1 + x)^y + (-x)^y where x is a divisor of y.
5, 7, 13, 17, 31, 37, 97, 127, 257, 881, 4651, 8191, 65537, 131071, 524287, 1273609, 2147483647, 2305843009213693951, 618970019642690137449562111, 3512911982806776822251393039617, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1
Keywords
Examples
5 is in this sequence because (1 + 1)^2 + (-1)^2 = 5 is prime where 1 is a divisor of 2. A complete list of (x, y, p) corresponding to the shown data is (1,2,5), (1,3,7), (2,2,13), (1,4,17), (1,5,31), (3,3,37), (2,4,97),(1,7,127), (1,8,257), (4,4,881), (5,5,4651), (1,13,8191), (1,16,65537), (1,17,131071), (1,19,524287), (7,7,1273609), (1,31,2147483647), (1,61,2305843009213693951), (1,89,618970019642690137449562111), (8,32,3512911982806776822251393039617), (1,107,162259276829213363391578010288127), (1,127,170141183460469231731687303715884105727). Further terms correspond to (x,y) = {(1,521), (1,607), (167,167), (1,1279), (1,2203), (1,2281), (1,3217), ...}. - _Hugo Pfoertner_, Jan 12 2020
Links
- Georg Fischer, Table of n, a(n) for n = 1..23
- J. S. Gerasimov, x^(y + 1) - y^x, SeqFan list, Aug 18 2014.
Programs
-
Mathematica
Union@ Flatten@ Table[Select[Map[(1 + #)^n + (-#)^n &, Divisors@ n], PrimeQ], {n, 150}] (* Michael De Vlieger, Apr 29 2017 *)
Extensions
Edited by N. J. A. Sloane, Jan 11 2020
Comments