cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285887 Primes of the form (1 + x)^y + (-x)^y where y is a divisor of x.

Original entry on oeis.org

13, 37, 41, 127, 271, 313, 421, 881, 1013, 1201, 1801, 1861, 2113, 2269, 2381, 2791, 3613, 4651, 5101, 5419, 6211, 7057, 7321, 9941, 10513, 10657, 12097, 13267, 13613, 14281, 16381, 19927, 20201, 21013, 21841, 24421, 24571, 26227, 30013, 33391, 34061, 35317, 41761, 45757, 47741, 49297
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2017

Keywords

Comments

If x = y then: 13, 37, 881, 4651, 1273609, ...

Examples

			13 is in this sequence because (1 + 2)^2 + (-2)^2 = 13 is prime where 2 is divisor of 2.
		

Crossrefs

Programs

  • Maple
    N:= 100000: # To get terms <= N
    Res:= NULL:
    for y from 2 while 2^y -1 <= N do
    z:= y/2^padic:-ordp(y, 2);
    if z > 1 and (z <> y or not isprime(z)) then next fi;
    for x from y by y do
      v:= (1+x)^y + (-x)^y;
      if v > N then break fi;
      if isprime(v) then Res:= Res, v; fi
    od od:
    sort(convert({Res}, list)); # Robert Israel, Jan 05 2020
  • Mathematica
    Union@ Flatten@ Table[Select[Map[(1 + n)^# + (-n)^# &, Divisors@ n], PrimeQ], {n, 200}] (* Michael De Vlieger, Apr 29 2017 *)

Extensions

Edited by N. J. A. Sloane, Jan 11 2020