A285887 Primes of the form (1 + x)^y + (-x)^y where y is a divisor of x.
13, 37, 41, 127, 271, 313, 421, 881, 1013, 1201, 1801, 1861, 2113, 2269, 2381, 2791, 3613, 4651, 5101, 5419, 6211, 7057, 7321, 9941, 10513, 10657, 12097, 13267, 13613, 14281, 16381, 19927, 20201, 21013, 21841, 24421, 24571, 26227, 30013, 33391, 34061, 35317, 41761, 45757, 47741, 49297
Offset: 1
Keywords
Examples
13 is in this sequence because (1 + 2)^2 + (-2)^2 = 13 is prime where 2 is divisor of 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. S. Gerasimov, x^(y + 1) - y^x, SeqFan list, Aug 18 2014.
Programs
-
Maple
N:= 100000: # To get terms <= N Res:= NULL: for y from 2 while 2^y -1 <= N do z:= y/2^padic:-ordp(y, 2); if z > 1 and (z <> y or not isprime(z)) then next fi; for x from y by y do v:= (1+x)^y + (-x)^y; if v > N then break fi; if isprime(v) then Res:= Res, v; fi od od: sort(convert({Res}, list)); # Robert Israel, Jan 05 2020
-
Mathematica
Union@ Flatten@ Table[Select[Map[(1 + n)^# + (-n)^# &, Divisors@ n], PrimeQ], {n, 200}] (* Michael De Vlieger, Apr 29 2017 *)
Extensions
Edited by N. J. A. Sloane, Jan 11 2020
Comments