This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285889 #34 May 14 2017 22:30:26 %S A285889 220,48,174,390,102,280,160,500,66,132,54,24280,992,560,140,168,60, %T A285889 10360,1120,1232,198,210,132,2170,520,1520,96,168,330,732,60,4424,270, %U A285889 540,144,1000,1484,4080,220,840,1144,16500,1988,5456,210,528,150,4158,1180,12236 %N A285889 The smaller of the lexicographically least pair (x, y) such that 0 < x < y and sigma(x) = sigma(y) = n + x + y. %C A285889 In the first 1000 terms the most repeated number is 840 with 15 occurrences. %H A285889 Paolo P. Lava, <a href="/A285889/b285889.txt">Table of n, a(n) for n = 0..1000</a> %e A285889 a(0) = 220: sigma(220) = sigma(284) = 220 + 284 = 504; %e A285889 a(1) = 48: sigma(48) = sigma(75) = 48 + 75 + 1 = 124; %e A285889 a(2) = 174: sigma(174) = sigma(184) = 174 + 184 + 2 = 360. %p A285889 with(numtheory): P:=proc(q) local a,b,k,n; for n from 0 to q do for k from 1 to q do %p A285889 a:=sigma(k)-k-n; b:=sigma(a)-a-n; if a>0 and b=k and a<>b then print(k); break; %p A285889 fi; od; od; end: P(10^9); %t A285889 Table[m = 1; While[MissingQ@ Set[k, SelectFirst[Range[m - 1], DivisorSigma[1, m] == DivisorSigma[1, #] == m + # + n &]], m++]; {k, m}, {n, 0, 10}][[All, 1]] (* Version 10.2, or *) %t A285889 Do[m = 1; While[Set[k, Module[{k = 1}, While[! Xor[DivisorSigma[1, m] == DivisorSigma[1, k] == m + k + n, k >= m], k++]; k]] >= m, m++]; Print@ k, {n, 0, 10}] (* _Michael De Vlieger_, Apr 28 2017 *) %o A285889 (PARI) getfirstterms(n)={my(L:list,S:list,k:small,t);L=List();S=List([1,3]);k=0;forstep(i=3,+oo,1,listput(S,sigma(i));forvec(j=[[2,i],[2,i]],t=vecsum(j)+k;if((S[j[1]]==t)&&(t==S[j[2]]),listput(L,j[1]);if(k==n,break(2),k++)),2));return(Vec(L))} \\ _R. J. Cano_, May 03 2017 %Y A285889 Cf. A000203, A285890, A285892. %Y A285889 See first terms of A002025 and A005276. %K A285889 nonn,easy %O A285889 0,1 %A A285889 _Paolo P. Lava_, Apr 28 2017