cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285890 The greater of the lexicographically least pair (x, y) such that 0 < x < y and sigma(x) = sigma(y) = n + x + y.

Original entry on oeis.org

284, 75, 184, 615, 110, 435, 212, 585, 70, 195, 56, 30429, 1012, 915, 182, 297, 92, 16983, 1886, 1725, 250, 345, 182, 2415, 716, 2175, 130, 285, 506, 975, 78, 5145, 418, 1107, 225, 1305, 1504, 9275, 246, 2001, 1336, 35875, 2002, 6405, 322, 915, 176, 7315, 1292
Offset: 0

Views

Author

Paolo P. Lava, Apr 28 2017

Keywords

Examples

			a(3) = 615: sigma(615) = sigma(390) = 615 + 390 + 3 = 1008;
a(4) = 110: sigma(110) = sigma(102) = 110 + 102 + 4 = 216;
a(5) = 435: sigma(435) = sigma(280) = 435 + 280 + 5 = 720.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 0 to q do for k from 1 to q do
    a:=sigma(k)-k-n; b:=sigma(a)-a-n; if a>0 and b=k and a<>b then print(a); break;
    fi; od; od; end: P(10^9);
  • Mathematica
    Table[m = 1; While[MissingQ@ Set[k, SelectFirst[Range[m - 1], DivisorSigma[1, m] == DivisorSigma[1, #] == m + # + n &]], m++]; {k, m}, {n, 0, 10}][[All, -1]] (* Version 10.2, or *)
    Do[m = 1; While[Set[k, Module[{k = 1}, While[! Xor[DivisorSigma[1, m] == DivisorSigma[1, k] == m + k + n, k >= m], k++]; k]] >= m, m++]; Print@ m, {n, 0, 10}] (* Michael De Vlieger, Apr 28 2017 *)