This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285914 #90 Dec 23 2024 14:53:45 %S A285914 1,1,1,2,1,0,1,2,1,0,3,1,2,0,1,0,0,1,2,3,1,0,0,4,1,2,0,0,1,0,3,0,1,2, %T A285914 0,0,1,0,0,4,1,2,3,0,5,1,0,0,0,0,1,2,0,0,0,1,0,3,4,0,1,2,0,0,0,1,0,0, %U A285914 0,5,1,2,3,0,0,6,1,0,0,4,0,0,1,2,0,0,0,0,1,0,3,0,0,0,1,2,0,0,5,0,1,0,0,4,0,0,1,2,3,0,0,6 %N A285914 Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k's interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2. %C A285914 Conjecture 1: T(n,k) is the number of parts in the partition of n into k consecutive parts, if T(n,k) > 0. %C A285914 Conjecture 2: row sums give A204217, which should be also the total number of parts in all partitions of n into consecutive parts. %C A285914 (The conjectures are true. See _Joerg Arndt_'s proof in the Links section.) - _Omar E. Pol_, Jun 14 2017 %C A285914 From _Omar E. Pol_, May 05 2020: (Start) %C A285914 Theorem: Let T(n,k) be an irregular triangle read by rows in which column k lists k's interleaved with k-1 zeros, and the first element of column k is in the row that is the k-th (m+2)-gonal number, with n >= 1, k >= 1, m >= 0. T(n,k) is also the number of parts in the partition of n into k consecutive parts that differ by m, including n as a valid partition. Hence the sum of row n gives the total number of parts in all partitions of n into consecutive parts that differ by m. %C A285914 About the above theorem, this is the case for m = 1. For m = 0 see the triangle A127093, in which row sums give A000203. For m = 2 see the triangle A330466, in which row sums give A066839 (conjectured). For m = 3 see the triangle A330888, in which row sums give A330889. %C A285914 Note that there are infinitely many triangles of this kind, with m >= 0. Also, every triangle can be represented with a diagram of overlapping curves, in which every column of triangle is represented by a periodic curve. (End) %H A285914 Joerg Arndt, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2017-June/017633.html">Proof of the conjectures of A204217 and A285914</a>, SeqFan Mailing Lists, Jun 03 2017. %F A285914 T(n,k) = k*A237048(n,k). %e A285914 Triangle begins (rows 1..28): %e A285914 1; %e A285914 1; %e A285914 1, 2; %e A285914 1, 0; %e A285914 1, 2; %e A285914 1, 0, 3; %e A285914 1, 2, 0; %e A285914 1, 0, 0; %e A285914 1, 2, 3; %e A285914 1, 0, 0, 4; %e A285914 1, 2, 0, 0; %e A285914 1, 0, 3, 0; %e A285914 1, 2, 0, 0; %e A285914 1, 0, 0, 4; %e A285914 1, 2, 3, 0, 5; %e A285914 1, 0, 0, 0, 0; %e A285914 1, 2, 0, 0, 0; %e A285914 1, 0, 3, 4, 0; %e A285914 1, 2, 0, 0, 0; %e A285914 1, 0, 0, 0, 5; %e A285914 1, 2, 3, 0, 0, 6; %e A285914 1, 0, 0, 4, 0, 0; %e A285914 1, 2, 0, 0, 0, 0; %e A285914 1, 0, 3, 0, 0, 0; %e A285914 1, 2, 0, 0, 5, 0; %e A285914 1, 0, 0, 4, 0, 0; %e A285914 1, 2, 3, 0, 0, 6; %e A285914 1, 0, 0, 0, 0, 0, 7; %e A285914 ... %e A285914 In accordance with the conjectures, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. These partitions are formed by 1, 2, 3 and 5 consecutive parts respectively, so the 15th row of the triangle is [1, 2, 3, 0, 5]. %e A285914 Illustration of initial terms: %e A285914 Row _ %e A285914 1 _|1| %e A285914 2 _|1 _| %e A285914 3 _|1 |2| %e A285914 4 _|1 _|0| %e A285914 5 _|1 |2 _| %e A285914 6 _|1 _|0|3| %e A285914 7 _|1 |2 |0| %e A285914 8 _|1 _|0 _|0| %e A285914 9 _|1 |2 |3 _| %e A285914 10 _|1 _|0 |0|4| %e A285914 11 _|1 |2 _|0|0| %e A285914 12 _|1 _|0 |3 |0| %e A285914 13 _|1 |2 |0 _|0| %e A285914 14 _|1 _|0 _|0|4 _| %e A285914 15 _|1 |2 |3 |0|5| %e A285914 16 _|1 _|0 |0 |0|0| %e A285914 17 _|1 |2 _|0 _|0|0| %e A285914 18 _|1 _|0 |3 |4 |0| %e A285914 19 _|1 |2 |0 |0 _|0| %e A285914 20 _|1 _|0 _|0 |0|5 _| %e A285914 21 _|1 |2 |3 _|0|0|6| %e A285914 22 _|1 _|0 |0 |4 |0|0| %e A285914 23 _|1 |2 _|0 |0 |0|0| %e A285914 24 _|1 _|0 |3 |0 _|0|0| %e A285914 25 _|1 |2 |0 _|0|5 |0| %e A285914 26 _|1 _|0 _|0 |4 |0 _|0| %e A285914 27 _|1 |2 |3 |0 |0|6 _| %e A285914 28 |1 |0 |0 |0 |0|0|7| %e A285914 ... %e A285914 Note that the k's are placed exactly below the k-th horizontal line segment of every row. %e A285914 The above structure is related to the triangle A237591, also to the left-hand part of the triangle A237593, and also to the left-hand part of the front view of the pyramid described in A245092. %t A285914 With[{nn = 6}, Table[Boole[If[EvenQ@ k, Mod[(n - k/2), k] == 0, Mod[n, k] == 0]] k, {n, nn (nn + 3)/2}, {k, Floor[((Sqrt[8 n + 1] - 1)/2)]}]] // Flatten (* _Michael De Vlieger_, Jun 15 2017, after Python by _Indranil Ghosh_ *) %o A285914 (Python) %o A285914 from sympy import sqrt %o A285914 import math %o A285914 def a237048(n, k): %o A285914 return int(n%k == 0) if k%2 else int(((n - k//2)%k) == 0) %o A285914 def T(n, k): return k*a237048(n, k) %o A285914 for n in range(1, 29): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # _Indranil Ghosh_, Apr 30 2017 %o A285914 (PARI) t(n, k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0); \\ A237048 %o A285914 tabf(nn) = {for (n=1, nn, for (k=1, floor((sqrt(1+8*n)-1)/2), print1(k*t(n, k), ", "); ); print(); ); } \\ _Michel Marcus_, Nov 04 2019 %Y A285914 Row n has length A003056(n). %Y A285914 Column k starts in row A000217(k). %Y A285914 The number of positive terms in row n is A001227(n), the number of partitions of n into consecutive parts. %Y A285914 Cf. A000203, A066839, A196020, A204217, A235791, A236104, A237048, A237591, A237593, A245092, A261699, A285898, A262626, A330889. %Y A285914 Triangles of the same family are A127093, this sequence, A330466, A330888. %K A285914 nonn,tabf %O A285914 1,4 %A A285914 _Omar E. Pol_, Apr 28 2017