cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285928 Expansion of (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^5 in powers of x.

This page as a plain text file.
%I A285928 #18 Apr 30 2017 07:38:45
%S A285928 1,5,20,65,190,501,1240,2890,6440,13775,28502,57205,111880,213670,
%T A285928 399620,733128,1321850,2345340,4100700,7072520,12045005,20272465,
%U A285928 33746060,55595635,90706390,146638756,235016940,373580735,589238640,922537655,1434232510,2214817165
%N A285928 Expansion of (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^5 in powers of x.
%C A285928 In general, if m > 1 and g.f. = Product_{k>=1} ((1 - x^(m*k)) / (1 - x^k))^m, then a(n, m) ~ exp(Pi*sqrt(2*(m-1)*n/3)) * (m-1)^(1/4) / (2^(5/4) * 3^(1/4) * m^(m/2) * n^(3/4)). - _Vaclav Kotesovec_, Apr 30 2017
%H A285928 Seiichi Manyama, <a href="/A285928/b285928.txt">Table of n, a(n) for n = 0..10000</a>
%F A285928 a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A116073(k)*a(n-k) for n > 0.
%F A285928 a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * 5^(5/2) * n^(3/4)). - _Vaclav Kotesovec_, Apr 30 2017
%t A285928 nmax = 40; CoefficientList[Series[Product[((1 - x^(5*k)) / (1 - x^k))^5, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 30 2017 *)
%Y A285928 (Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), A285927 (m=3), A093160 (m=4), this sequence (m=5).
%Y A285928 Cf. A035959, A285932.
%K A285928 nonn
%O A285928 0,2
%A A285928 _Seiichi Manyama_, Apr 28 2017