A285929 Numbers m such that 2^m + (-1)^m is prime.
0, 2, 3, 4, 5, 7, 8, 13, 16, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667
Offset: 1
Keywords
Examples
4 is in this sequence because 2^4 + (-1)^4 = 17 is prime. 5 is in this sequence because 2^5 + (-1)^5 = 31 is prime.
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..52
Crossrefs
Programs
-
Magma
[m: m in [0..1000]| IsPrime(2^m + (-1)^m)];
-
Mathematica
Select[Range[0, 10^4], PrimeQ[2^# + (-1)^#] &] (* Michael De Vlieger, May 03 2017 *)
-
PARI
is(m)=ispseudoprime(2^m+(-1)^m) \\ Charles R Greathouse IV, Jun 06 2017
Formula
a(n) = A174269(n) for n > 2. - Jeppe Stig Nielsen, Feb 19 2023
Comments