A285956 Number of orthogonal rectangles with vertices on an n X n square grid of points but with no vertices on the grid's diagonals.
0, 0, 0, 0, 2, 10, 30, 102, 204, 444, 740, 1300, 1950, 3030, 4242, 6090, 8120, 11032, 14184, 18504, 23130, 29250, 35750, 44110, 52932, 64020, 75660, 90012, 105014, 123214, 142170, 164850, 188400, 216240, 245072, 278800, 313650, 354042, 395694, 443574, 492860, 549100, 606900, 672420, 739662
Offset: 0
Keywords
Crossrefs
Programs
-
PARI
{a(n)= my(c = 0, np1 = n + 1); for(i1 = 1, n - 1, for(i2 = i1 + 1, n, for(j1 = 1, n - 1, if(i1 == j1 || i1 + j1 == np1 || i2 == j1 || i2 + j1 == np1, continue, for(j2 = j1 + 1, n, if(i1 <> j2 && i1 + j2 <> np1 && i2 <> j2 && i2 + j2 <> np1, c++)))))); c}
Formula
Conjectures from Colin Barker, May 03 2017: (Start)
G.f.: 2*x^4*(1 + 3*x + 3*x^2 + 17*x^3) / ((1 - x)^5*(1 + x)^3).
a(n) = (n^4 - 10*n^3 + 33*n^2 - 34*n) / 4 for n even.
a(n) = (n^4 - 10*n^3 + 37*n^2 - 58*n + 30) / 4 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
(End)
Comments