This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285994 #16 Mar 05 2022 01:36:12 %S A285994 0,1,1,4,6,11,26,46,84,167,313,576,1086,2016,3710,6876,12660,23196, %T A285994 42542,77798,141910,258648,470558,854644,1550588,2809620,5084588, %U A285994 9192349,16601714,29953754,53997062,97257129,175033355,314771224,565664138,1015841191 %N A285994 Number of increasing runs in all Carlitz compositions of n. %C A285994 No two adjacent parts of a Carlitz composition are equal. %H A285994 Alois P. Heinz, <a href="/A285994/b285994.txt">Table of n, a(n) for n = 0..2000</a> %F A285994 a(n) = Sum_{k=0..floor(n/3)} (k+1) * A241701(n,k) for n>0, a(0) = 0. %e A285994 a(1) = 1: (1). %e A285994 a(2) = 1: (2). %e A285994 a(3) = 4: (12), (2)(1), (3). %e A285994 a(4) = 6: (12)(1), (13), (3)(1), (4). %e A285994 a(5) = 11: (2)(12), (13)(1), (23), (3)(2), (14), (4)(1), (5). %p A285994 b:= proc(n, l) option remember; `if`(n=0, [1, 0], add(`if`(j=l, 0, %p A285994 (p-> p+`if`(j>l, [0, p[1]], 0))(b(n-j, j))), j=1..n)) %p A285994 end: %p A285994 a:= n-> b(n, 0)[2]: %p A285994 seq(a(n), n=0..40); %t A285994 b[n_, l_] := b[n, l] = If[n == 0, {1, 0}, Sum[If[j == l, {0, 0}, Function[p, p + If[j > l, {0, p[[1]]}, 0]][b[n - j, j]]], {j, 1, n}]]; %t A285994 a[n_] := b[n, 0][[2]]; %t A285994 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Mar 05 2022, after _Alois P. Heinz_ *) %Y A285994 Cf. A003242, A241701. %K A285994 nonn %O A285994 0,4 %A A285994 _Alois P. Heinz_, Apr 30 2017