cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285994 Number of increasing runs in all Carlitz compositions of n.

This page as a plain text file.
%I A285994 #16 Mar 05 2022 01:36:12
%S A285994 0,1,1,4,6,11,26,46,84,167,313,576,1086,2016,3710,6876,12660,23196,
%T A285994 42542,77798,141910,258648,470558,854644,1550588,2809620,5084588,
%U A285994 9192349,16601714,29953754,53997062,97257129,175033355,314771224,565664138,1015841191
%N A285994 Number of increasing runs in all Carlitz compositions of n.
%C A285994 No two adjacent parts of a Carlitz composition are equal.
%H A285994 Alois P. Heinz, <a href="/A285994/b285994.txt">Table of n, a(n) for n = 0..2000</a>
%F A285994 a(n) = Sum_{k=0..floor(n/3)} (k+1) * A241701(n,k) for n>0, a(0) = 0.
%e A285994 a(1) = 1: (1).
%e A285994 a(2) = 1: (2).
%e A285994 a(3) = 4: (12), (2)(1), (3).
%e A285994 a(4) = 6: (12)(1), (13), (3)(1), (4).
%e A285994 a(5) = 11: (2)(12), (13)(1), (23), (3)(2), (14), (4)(1), (5).
%p A285994 b:= proc(n, l) option remember; `if`(n=0, [1, 0], add(`if`(j=l, 0,
%p A285994       (p-> p+`if`(j>l, [0, p[1]], 0))(b(n-j, j))), j=1..n))
%p A285994     end:
%p A285994 a:= n-> b(n, 0)[2]:
%p A285994 seq(a(n), n=0..40);
%t A285994 b[n_, l_] := b[n, l] = If[n == 0, {1, 0}, Sum[If[j == l, {0, 0}, Function[p, p + If[j > l, {0, p[[1]]}, 0]][b[n - j, j]]], {j, 1, n}]];
%t A285994 a[n_] := b[n, 0][[2]];
%t A285994 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Mar 05 2022, after _Alois P. Heinz_ *)
%Y A285994 Cf. A003242, A241701.
%K A285994 nonn
%O A285994 0,4
%A A285994 _Alois P. Heinz_, Apr 30 2017