cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286000 A table of partitions into consecutive parts (see Comments lines for definition).

This page as a plain text file.
%I A286000 #66 Oct 21 2017 21:05:29
%S A286000 1,2,3,2,4,1,5,3,6,2,3,7,4,2,8,3,1,9,5,4,10,4,3,4,11,6,2,3,12,5,5,2,
%T A286000 13,7,4,1,14,6,3,5,15,8,6,4,5,16,7,5,3,4,17,9,4,2,3,18,8,7,6,2,19,10,
%U A286000 6,5,1,20,9,5,4,6,21,11,8,3,5,6,22,10,7,7,4,5,23,12,6,6,3,4,24,11,9,5,2,3,25,13,8,4,7,2
%N A286000 A table of partitions into consecutive parts (see Comments lines for definition).
%C A286000 This is a triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists successive blocks of k consecutive terms in decreasing order, where the m-th block starts with k + m - 1, m>=1, and the first element of column k is in the row k*(k+1)/2.
%C A286000 The partitions of n into consecutive parts are represented from the row n up to row A288529(n) as maximum, exclusively in the columns where the blocks begin.
%C A286000 More precisely, the partition of n into exactly k consecutive parts (if such partition exists) is represented in the column k from the row n up to row n + k - 1 (see examples).
%C A286000 A288772(n) is the minimum number of rows that are required to represent in this table the partitions of all positive integers <= n into consecutive parts.
%C A286000 A288773(n) is the largest of all positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
%C A286000 A288774(n) is the largest positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
%C A286000 Theorem: the smallest part of the partition of n into exactly k consecutive parts (if such partition exists) equals the number of positive integers <= n having a partition into exactly k consecutive parts.
%e A286000 Table de partitions into consecutive parts (first 28 rows):
%e A286000 1;
%e A286000 2;
%e A286000 3,   2;
%e A286000 4,   1;
%e A286000 5,   3;
%e A286000 6,   2,  3;
%e A286000 7,   4,  2;
%e A286000 8,   3,  1;
%e A286000 9,   5,  4;
%e A286000 10,  4,  3,  4;
%e A286000 11,  6,  2,  3;
%e A286000 12,  5,  5,  2;
%e A286000 13,  7,  4,  1;
%e A286000 14,  6,  3,  5;
%e A286000 15,  8,  6,  4,  5;
%e A286000 16,  7,  5,  3,  4;
%e A286000 17,  9,  4,  2,  3;
%e A286000 18,  8,  7,  6,  2;
%e A286000 19, 10,  6,  5,  1;
%e A286000 20,  9,  5,  4,  6;
%e A286000 21, 11,  8,  3,  5,  6;
%e A286000 22, 10,  7,  7,  4,  5;
%e A286000 23, 12,  6,  6,  3,  4;
%e A286000 24, 11,  9,  5,  2,  3;
%e A286000 25, 13,  8,  4,  7,  2;
%e A286000 26, 12,  7,  8,  6,  1;
%e A286000 27, 14, 10,  7,  5,  7;
%e A286000 28, 13,  9,  6,  4,  6,  7;
%e A286000 ...
%e A286000 Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts:
%e A286000 .   ------------------------------------------------------------------------
%e A286000 Fig:   A     B       C         D          E            F             G
%e A286000 .   ------------------------------------------------------------------------
%e A286000 . n:   1     2       3         4          5            6             7
%e A286000 Row ------------------------------------------------------------------------
%e A286000 1   | [1];|  1; |  1;     |  1;    |  1;        |  1;         |  1;        |
%e A286000 2   |     | [2];|  2;     |  2;    |  2;        |  2;         |  2;        |
%e A286000 3   |     |     | [3],[2];|  3;  2;|  3,  2;    |  3,  2;     |  3,  2;    |
%e A286000 4   |     |     |  4 ,[1];| [4], 1;|  4,  1;    |  4,  1;     |  4,  1;    |
%e A286000 5   |     |     |         |        | [5],[3];   |  5,  3;     |  5,  3;    |
%e A286000 6   |     |     |         |        |  6, [2], 3;| [6], 2, [3];|  6,  2,  3;|
%e A286000 7   |     |     |         |        |            |  7,  4, [2];| [7],[4], 2;|
%e A286000 8   |     |     |         |        |            |  8,  3, [1];|  8, [3], 1;|
%e A286000 .   ------------------------------------------------------------------------
%e A286000 Figure F: for n = 6 the partitions of 6 into consecutive parts are [6] and [3, 2, 1]. These partitions have 1 and 3 consecutive parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6.
%e A286000 .
%e A286000 Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts:
%e A286000 .    --------------------------------------------------------------------
%e A286000 Fig:        H             I                  J                 K
%e A286000 .    --------------------------------------------------------------------
%e A286000 . n:        8             9                  10                11
%e A286000 Row  --------------------------------------------------------------------
%e A286000 1    |  1;        |  1;            |   1;             |   1;            |
%e A286000 1    |  2;        |  2;            |   2;             |   2;            |
%e A286000 3    |  3,  2;    |  3,  2;        |   3,  2;         |   3,  2;        |
%e A286000 4    |  4,  1;    |  4,  1;        |   4,  1;         |   4,  1;        |
%e A286000 5    |  5,  3;    |  5,  3;        |   5,  3;         |   5,  3;        |
%e A286000 6    |  6,  2,  3;|  6,  2,  3;    |   6,  2,  3;     |   6,  2,  3;    |
%e A286000 7    |  7,  4,  2;|  7,  4,  2;    |   7,  4,  2;     |   7,  4,  2;    |
%e A286000 8    | [8], 3,  1;|  8,  3,  1;    |   8,  3,  1;     |   8,  3,  1;    |
%e A286000 9    |            | [9],[5],[4];   |   9,  5,  4;     |   9,  5,  4;    |
%e A286000 10   |            | 10, [4],[3], 4;| [10], 4,  3, [4];|  10,  4,  3;  4;|
%e A286000 11   |            | 11,  6, [2], 3;|  11,  6,  2; [3];| [11],[6], 2,  3;|
%e A286000 12   |            |                |  12,  5,  5, [2];|  12, [5], 5,  2;|
%e A286000 13   |            |                |  13,  7,  4, [1];|  13,  7,  4,  1;|
%e A286000 .    --------------------------------------------------------------------
%e A286000 Figure J: For n = 10 the partitions of 10 into consecutive parts are [10] and [4, 3, 2, 1]. These partitions have 1 and 4 consecutive parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10.
%e A286000 Illustration of initial terms arranged into the diagram of the triangle A237591:
%e A286000 .                                                           _
%e A286000 .                                                         _|1|
%e A286000 .                                                       _|2 _|
%e A286000 .                                                     _|3  |2|
%e A286000 .                                                   _|4   _|1|
%e A286000 .                                                 _|5    |3 _|
%e A286000 .                                               _|6     _|2|3|
%e A286000 .                                             _|7      |4  |2|
%e A286000 .                                           _|8       _|3 _|1|
%e A286000 .                                         _|9        |5  |4 _|
%e A286000 .                                       _|10        _|4  |3|4|
%e A286000 .                                     _|11         |6   _|2|3|
%e A286000 .                                   _|12          _|5  |5  |2|
%e A286000 .                                 _|13           |7    |4 _|1|
%e A286000 .                               _|14            _|6   _|3|5 _|
%e A286000 .                             _|15             |8    |6  |4|5|
%e A286000 .                           _|16              _|7    |5  |3|4|
%e A286000 .                         _|17               |9     _|4 _|2|3|
%e A286000 .                       _|18                _|8    |7  |6  |2|
%e A286000 .                     _|19                 |10     |6  |5 _|1|
%e A286000 .                   _|20                  _|9     _|5  |4|6 _|
%e A286000 .                 _|21                   |11     |8   _|3|5|6|
%e A286000 .               _|22                    _|10     |7  |7  |4|5|
%e A286000 .             _|23                     |12      _|6  |6  |3|4|
%e A286000 .           _|24                      _|11     |9    |5 _|2|3|
%e A286000 .         _|25                       |13       |8   _|4|7  |2|
%e A286000 .       _|26                        _|12      _|7  |8  |6 _|1|
%e A286000 .     _|27                         |14       |10   |7  |5|7 _|
%e A286000 .    |28                           |13       |9    |6  |4|6|7|
%e A286000 ...
%e A286000 The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
%Y A286000 Row n has length A003056(n).
%Y A286000 The first element of column k is in row A000217(k).
%Y A286000 For another version see A286001.
%Y A286000 Cf. A001227, A109814, A196020, A204217, A235791, A236104, A237048, A237591, A237593, A245092, A285914, A286013, A288529, A288772, A288773, A288774.
%K A286000 nonn,tabf
%O A286000 1,2
%A A286000 _Omar E. Pol_, Apr 30 2017