cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286012 A Kedlaya-Wilf matrix for the Fibonacci sequence A000045.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 17, 5, 1, 5, 20, 48, 50, 8, 1, 6, 30, 102, 197, 147, 13, 1, 7, 42, 185, 532, 815, 434, 21, 1, 8, 56, 303, 1165, 2804, 3391, 1282, 34
Offset: 1

Views

Author

Oboifeng Dira, Apr 30 2017

Keywords

Comments

For any power series f(x) starting with the term x the first column of the Kedlaya-Wilf matrix are the coefficients of f(x), the second column are the coefficients of f(f(x)), the third column are the coefficients of f(f(f(x))) and so on. This gives a matrix with first row consisting of ones. The sequence given is the diagonal reading of this matrix from right up to left down.

Examples

			f^(3)(x) = x + 3x^2 + 12x^4 + ... as in A283679, so a(4)=1, a(8)=3, a(13)=12.
		

Crossrefs

Programs

  • Maple
    h:= x-> x/(1-x-x^2):
    h2:= n-> coeff(series(h(h(x))), x, n+1), x, n):
    h3:= n -> coeff(series(h(h2(x))),x,n+1), x, n):
    etc.
    h7:= n -> coeff(series(h(h6(x))),x,n+1), x, n): N7:=array(1..7,1..7,sparse): gg:=array([h1,h2,h3,h4,h5,h6,h7]):for k from 1 to 7 do: for j from 1 to 7 do: N7[k,j]:=coeff(series(gg[j],x,12),x^k): od:od:

Formula

As an n X n matrix a(i,j) = coefficient of x^i in f^(j)(x) for i,j=1..n where f^(j) is the j-fold composition of f with itself.