A286012 A Kedlaya-Wilf matrix for the Fibonacci sequence A000045.
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 17, 5, 1, 5, 20, 48, 50, 8, 1, 6, 30, 102, 197, 147, 13, 1, 7, 42, 185, 532, 815, 434, 21, 1, 8, 56, 303, 1165, 2804, 3391, 1282, 34
Offset: 1
Examples
f^(3)(x) = x + 3x^2 + 12x^4 + ... as in A283679, so a(4)=1, a(8)=3, a(13)=12.
Links
- Kiran S. Kedlaya, Another Combinatorial Determinant, Journal of Combinatorial Theory Series A 90(1), November 1998.
Programs
-
Maple
h:= x-> x/(1-x-x^2): h2:= n-> coeff(series(h(h(x))), x, n+1), x, n): h3:= n -> coeff(series(h(h2(x))),x,n+1), x, n): etc. h7:= n -> coeff(series(h(h6(x))),x,n+1), x, n): N7:=array(1..7,1..7,sparse): gg:=array([h1,h2,h3,h4,h5,h6,h7]):for k from 1 to 7 do: for j from 1 to 7 do: N7[k,j]:=coeff(series(gg[j],x,12),x^k): od:od:
Formula
As an n X n matrix a(i,j) = coefficient of x^i in f^(j)(x) for i,j=1..n where f^(j) is the j-fold composition of f with itself.
Comments