cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286016 Signed continued fraction expansion with all signs negative of tanh(1).

This page as a plain text file.
%I A286016 #40 Jul 02 2022 09:30:12
%S A286016 1,5,2,2,2,2,9,2,2,2,2,2,2,2,2,13,2,2,2,2,2,2,2,2,2,2,2,2,17,2,2,2,2,
%T A286016 2,2,2,2,2,2,2,2,2,2,2,2,21,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U A286016 25,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N A286016 Signed continued fraction expansion with all signs negative of tanh(1).
%C A286016 For any given sequence of signs (e_1, e_2, ..., e_n, ...) one may define the signed continued fraction expansion of a real number x by using floor or ceiling in the step i according to e_i = +1 or e_i = -1. In the present case for the sequence (-1, -1, -1, -1, ...) consisting of only negative signs the ceiling is taken at each step, and the formulas with x_0 = x are a_n = ceiling(x_n) and x_{n+1} = 1/(a_n - x_n). See chapter 1 and 2 of the book by Perron.
%H A286016 Adolf Hurwitz, <a href="http://www.ngzh.ch/archiv/1896_41/41_2/41_26.pdf">Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden</a>, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Jahrg. 41 (1896), Jubelband 2, 34-64. Reprinted in Hurwitz's Mathematische Werke.
%H A286016 Oskar Perron, <a href="https://archive.org/details/dielehrevondenk00perrgoog">Die Lehre von den Kettenbrüchen</a>, Teubner, Leipzig, 1930.
%F A286016 Using an obvious condensed notation we get for the sequence 1, 5, 2^(4), 9, 2^(8), 13, 2^(12), 17, 2^(16), 21, 2^(20), ... where 2^(m) means m copies of 2.
%e A286016 a(2) = 5, a(3) = a(4) = a(5) = a(6) = 2, a(7) = 9, etc. These numbers are obtained from the partial quotients xj as follows:
%e A286016 x2 =  (1 +  e^2)/( 2 + 0e^2) ~4.17 so that a(2)=ceiling(x2)=5;
%e A286016 x3 =  (2 + 0e^2)/( 9 - e^2)  ~1.21 so that a(3)=ceiling(x3)=2;
%e A286016 x4 =  (9 -  e^2)/(16 - 2e^2) ~1.31 so that a(4)=ceiling(x4)=2;
%e A286016 x5 = (16 - 2e^2)/(23 - 3e^2) ~1.46 so that a(5)=ceiling(x5)=2;
%e A286016 x6 = (23 - 3e^2)/(30 - 4e^2) ~1.87 so that a(6)=ceiling(x6)=2;
%e A286016 x7 = (30 - 4e^2)/(37 - 5e^2) ~8.11 so that a(7)=ceiling(x7)=9.
%e A286016 The pairs of integers appearing in the xj's are obtained as the principal or as every other of the non-principal approximating fractions of e^2 in the sense of the A. Hurwitz reference.
%p A286016 x:=(exp(1)-exp(-1))/(exp(1)+exp(-1)):b:=ceil(x): x1:=1/(b-x):L:=[b]:
%p A286016 for k from 0 to 40 do:
%p A286016 b1:=ceil(x1): x1:=1/(b1-x1): L:=[op(L),b1]: od: print(L);
%Y A286016 Cf. A004273 (continued fraction of tanh(1)), A280135, A280136.
%K A286016 nonn,cofr
%O A286016 1,2
%A A286016 _Kutlwano Loeto_, Apr 30 2017
%E A286016 More terms from _Jinyuan Wang_, Jul 02 2022