A286037 a(n) = T(A285984(n))^2, where T(m) is the m-th triangular number A000217(m).
0, 37271025, 4917515625, 32996505944592590400, 4353432777721630310400, 29211445283110309395256454577225, 3854046352373857001854365165911025, 25860572538708927496411840821477504196161600, 3411945020082158343071838489442339152945921600, 22894081602203374655543296113789919615194083223613314225
Offset: 0
Examples
For n = 2, b(n) = 374, a(n)= 4917515625. For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = (T(b(n)))^2 = (A000217(A285984(n)))^2 = (A000217(107184))^2 = (5744258520)^2=32996505944592590400.
References
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
Links
- Vladimir Pletser, Table of n, a(n) for n = 0..1000
- M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
- Michael A. Bennett, Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
- Eric Weisstein's World of Mathematics, Mordell Curve
Programs
-
Maple
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,4917515625’); for n from 2 to 1000 do b:= 264*sqrt(27*(b0^2+b0)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
Formula
Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = (T(b(n)))^2 (this sequence), one has :
a(n) = ([264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)^2.
Empirical g.f.: 27225*x*(1369 + 179256*x + 30879367019*x^2 + 168661970400*x^3 + 30879367019*x^4 + 179256*x^5 + 1369*x^6) / ((1 - x)*(1 - 940898*x + x^2)*(1 - 970*x + x^2)*(1 + 970*x + x^2)*(1 + 940898*x + x^2)). - Colin Barker, May 01 2017
Comments